
Mining Persistent Activity in Continually Evolving Networks
Caleb Belth

University of Michigan

cbelth@umich.edu

Xinyi Zheng

University of Michigan

zxycarol@umich.edu

Danai Koutra

University of Michigan

dkoutra@umich.edu

ABSTRACT

Frequent pattern mining is a key area of study that gives insights

into the structure and dynamics of evolving networks, such as social

or road networks. However, not only does a network evolve, but

often the way that it evolves, itself evolves. Thus, knowing, in addi-

tion to patterns’ frequencies, for how long and how regularly they

have occurred—i.e., their persistence—can add to our understanding

of evolving networks. In this work, we propose the problem of

mining activity that persists through time in continually evolving

networks—i.e., activity that repeatedly and consistently occurs. We

extend the notion of temporal motifs to capture activity among

specific nodes, in what we call activity snippets, which are small

sequences of edge-updates that reoccur. We propose axioms and

properties that a measure of persistence should satisfy, and develop

such a persistence measure. We also propose PENminer, an efficient

framework for mining activity snippets’ Persistence in Evolving Net-

works, and design both offline and streaming algorithms. We apply

PENminer to numerous real, large-scale evolving networks and

edge streams, and find activity that is surprisingly regular over a

long period of time, but too infrequent to be discovered by aggregate

count alone, and bursts of activity exposed by their lack of persis-

tence. Our findings with PENminer include neighborhoods in NYC

where taxi traffic persisted through Hurricane Sandy, the opening

of new bike-stations, characteristics of social network users, and

more. Moreover, we use PENminer towards identifying anomalies

in multiple networks, outperforming baselines at identifying subtle

anomalies by 9.8-48% in AUC.

ACM Reference Format:

Caleb Belth, Xinyi Zheng, and Danai Koutra. 2020. Mining Persistent Ac-

tivity in Continually Evolving Networks. In Proceedings of the 26th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’20),

August 23–27, 2020, Virtual Event, CA, USA. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3394486.3403136

1 INTRODUCTION

Many networks evolve continually over time, such as traffic net-

works that encode current en-route traffic, networks of computers

(IP-addresses) sending messages to each other, social networks of

users interacting over time, and more. In order to understand these

networks and the systems they represent, it is important to consider

not just their structure, but also their temporal dynamics. Towards

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00

https://doi.org/10.1145/3394486.3403136

Figure 1: We seek to measure the persistence of activity snippets

(i.e., reoccurring sequences of edge-updates) in continually evolv-

ing networks, which allows snippets 1 and 2 to be differentiated.

While both snippets have approximately the same frequency, snip-

pet 1 is more persistent, and snippet 2 is bursty. Activity snippets

differ from temporal motifs by allowing different nodes interacting

in the sameway to be treated as distinct snippets (e.g., depending on

the application, if snippet 2 reoccurswith nodes 6 and 7, it can either

be treated as an instance of the same snippet, or of a new snippet).

this goal, existing works have focused on counting patterns in net-

works. These patterns include temporal motifs (small subgraph

patterns) [14, 17, 21, 24], frequent subgraphs in evolving networks

[3, 4, 6], flow motifs [16], communication motifs [30], and coevolv-

ing relational motifs [5]. This line of research uses the frequency

of patterns towards understanding the behavior of networks (e.g.,

some interaction patterns are more common in Q&A forums than

in instant messengers [24]). However, many patterns in evolving

networks may only last for a short period of time (e.g., bursty ac-

tivity). This can lead to large aggregate counts, making a bursty

anomaly falsely appear to be an intrinsic characteristic of a dynamic

network. On the other hand, there may be important activity in a

network that has low overall frequency, but that occurs continually

and regularly [27], such as a stealthy computer-network attack.

Thus, to more fully understand the dynamics of evolving networks,

a pattern’s persistence—involving how long it has occurred, how

uniformly its occurrences are spread out, and what its frequency

is—should be taken into account (Fig. 1).

In this work, we seek to mine persistent activity in continually

evolving networks. We view the activity in a network as a stream

of edge updates (insertions or deletions) over time. We introduce

activity snippets by extending the idea of temporal motifs [24],

which encode activity among nodes in general, to allow for encoding

activity between or among specific nodes. This extension allows

us to capture exact activity, (e.g., a specific edge in the network),

which is important for applications like identifying which public

transportation routes are used persistently, or identifying suspicious

nodes or edges (e.g., nodes 4 and 5 in Fig. 1). In other applications,

such as social network analysis, wemay be interested in interactions

between nodes in general, with no specific users in mind. In this

case, activity snippets reduce to temporal motifs. In either case,

activity can repeat, whether it be specific nodes repeatedly engaging,

or different sets of nodes behaving in consistent ways. We seek to

analyze this activity in terms of how persistently it occurs.

Our main contributions are as follows:

1

https://doi.org/10.1145/3394486.3403136
https://doi.org/10.1145/3394486.3403136

• Precise Formulation of Persistence: We introduce four ax-

ioms and three general properties that a measure of persistence

ought to satisfy. We also provide a versatile persistence measure,

and prove that it satisfies all axioms and properties.

• Offline and Online Algorithms: We develop PENminer, an

efficient framework that uses our persistence measure to mine

evolving networks. Our offline version, oPENminer, uses the

measure for analyzing time-stamped sequences of edges from

the past. Our online version, sPENminer, computes the measure

incrementally for real-time analysis of edge-streams.

• Extensive Experiments on Real Data: We perform experi-

ments on real, large scale evolving networks, which reveal real-

world phenomena, including neighborhoods in NYC where taxi

traffic persisted through Hurricane Sandy, the opening of new

bike-stations in multiple cities, characteristics of social network

users, and more. We also demonstrate that PENminer is scalable

in offline and streaming settings, processing edge-updates in each

stream 10K to 360K times faster than the rate of that stream. This

allows both subtle and bursty activity to be identified in real time,

right when it happens. PENminer also effectively identifies subtle

anomalies, outperforming baselines by 9.8-48% in AUC.

Our code is available at https://github.com/GemsLab/PENminer.

2 RELATEDWORK

Our work is related to motif mining, frequent subgraph mining,

and persistent item mining.

Motif Mining. Network motifs, which are small, frequent sub-

graph patterns [23] are used in various problems, such as network

summarization [22] and exploration, and dense subgraph detection

[12]. Temporal motifs [17] extend static motifs to evolving networks

by adding an ordering to their edges. Researchers have analyzed

temporal motifs within and across a wide-range of networks [24],

and have proposed sampling methods to estimate their counts [21].

Temporal motifs have also been extended to capture the flow of

information among nodes in a motif [16]. Among different motifs,

triangle counting has attracted significant interest [28].

A special case, communication motifs, was introduced to model

temporal communication patterns of users in communication net-

works, for the purpose of understanding information flow [14, 30].

In [30], focusing on motif counts, the authors observed stability

in the ranking of the ten most frequent motifs over time, but did

not investigate subtly persistent or bursty behavior. Coevolving

Relational Motifs (CRMs) are patterns that describe sets of nodes

that evolve together in a consistent way [5]. In CRMs, consistency

means that when a set of nodes co-evolve, it is almost always in the

way specified by the motif. Thus, it considers the relative frequency

of the motif, compared to other possible motifs over the same nodes,

but does not investigate persistence.

Our work differs from motif-mining in its focus on persistence

not just counts, and much of our analysis deals with specific edges

or sequences of edges, rather than general activity among nodes.

Frequent Subgraph Mining. Frequent subgraph mining (FSM)

has two settings: transactional FSM and single graph FSM [15].

The transactional setting attempts to identify, in a sequence of

graphs (transactions), subgraphs that appear in a large number of

the graphs. This setting naturally extends to evolving networks, by

Table 1: Description of major symbols.

Notation Description

S Edge stream

x Activity snippet

kmax, δmax Maximum size and duration for a snippet

ϕ View of a snippet (ID, Label, or Order)

[ti , tj], |[ti , tj]| Interval of time and its width tj − ti
Ox , ˜Ox All and unique occurrences of x in [ts , te], resp.
Γx Gaps (lengths of time) between unique occurrences of x

treating graph snapshots (corresponding to a batch of edge updates)

as transactions [25]. The single graph setting seeks to identify

subgraphs that have many instances within a single, large graph

[10]. It has also been extended to evolving networks, including

edge streams [3, 4, 6], where the goal is to adaptively maintain the

most frequent subgraphs. While these methods seek to find frequent

subgraphs, we seek to find persistent activity.

Persistent ItemMining.Motivated by scenarios of stealthy click-

fraud or distributed denial-of-service attacks, persistent item min-

ing in data streams was introduced in [9]. Arguing that, besides

frequency, the length of the time period in which an item appears

is important for understanding the dynamics of streaming data, the

authors introduced a heuristic definition of a persistent item as one

that occurs at least once in a large number of equally-sized obser-

vation periods. As we show, this simple definition violates some

intuitive desired properties (§ 3.4). Our work goes beyond heuris-

tics to establish a technical definition of a persistence measure, and

focuses on edge-streams.

Persistent community detection, which attempts to find com-

munities that last for long durations of time, has also been stud-

ied [19, 26]. However, these works seek to find tightly-knit sub-

graphs (communities) that last for a long time, while we focus on

measuring activity that regularly re-occurs through time without

requiring that this activity take place in contiguous chunks of time.

3 THEORY

3.1 Preliminary Definitions

We begin with preliminary definitions. Since most definitions apply

beyond network settings, we first introduce the general concepts

in § 3.1.1 and then the network-specific terminology in § 3.1.2.

3.1.1 Events in Time. Interval of Time.An interval of time [ts , te]
(Fig. 2) is defined as {t : t ∈ R≥0, t ∈ [ts , te]}. The width of the

interval is |[ts , te]| = te − ts ≥ 0. The set of all intervals is I ≜
{[ts , te] : ts , te ∈ R≥0, ts ≤ te }.

Figure 2: Intervals.

Event. An event x , with respect to an

interval [ts , te], is something that occurs

at least once in that interval. Examples

include item purchases in a sequence of transactions, and measure-

ments in a time series. The universe of events is X.

Event Occurrence. An occurrence, t ∈ [ts , te] of x , is a timestamp.

All the occurrences of x , Ox = {tf , . . . , tl }, form an ordered mul-

tiset of timestamps between the first and last occurrrences, and

the corresponding interval of occurrences is [tf , tl]x ⊆ [ts , te] (e.g.,

Fig. 2). We denote the ordered set of unique occurrences
˜Ox .

2

https://github.com/GemsLab/PENminer

Figure 3: Left: An update sequence that is ordered but not contigu-

ous. Right: The activity snippet for the sequence, depending on the

view ϕ (ID, Label, or Order), and a graph describing the activity.

Solid/dashed edges capture types of interactions (e.g., edge types or

insertions vs. deletions), and the node colors denote labels.

Occurrence Gaps. The gaps (i.e., amount of time) between oc-

currences of x form the sequence Γx = (д1, . . . ,д | ˜Ox |−1
), where

дi = ti+1−ti for ti , ti+1 ∈ ˜Ox . The number of gaps is |Γx | = | ˜Ox |−1.

3.1.2 Activity Snippets in Evolving Networks. Graph or Network.

A graph or networkG = (V , E) is a set of nodesV , and a set of edges

E ⊆ V ×V . If an edge between nodes v1 and v2 has a relationship
type r , we denote it (v1, r ,v2). Our proposed persistence measure

and algorithms apply to general networks: labeled (nodes/edges),

directed, weighted, bipartite or multi-graphs.

Edge-update. An edge update u = (±,v1, r ,v2, t) to a network G
is the insertion (+) or deletion (-) of an edge (v1, r ,v2) at time t . We

refer to u’s timestamp with timestamp(u).

Edge Stream. An edge stream S = (u
1
,u

2
, . . .) is a time-ordered

sequence of possibly infinite edge-updates to an evolving graph

G = (G1,G2, . . .). We denote the start time of S , start(S) =
timestamp(u

1
), its length |S |, and if bounded, its end time end(S) =

timestamp(u |S |). We call a sub-sequence of S that consists of all

edge-updates in the lastw time units a window W of widthw .

Activity Snippet. Intuitively, an activity snippet x describes a

sequence of activity among connected nodes in the network. Specif-

ically, x = (ϕ(ui), . . . ,ϕ(u j)) is a sequence of ordered, but not-

necessarily contiguous, edge updates, where the node IDs may be

replaced by a view ϕ: (1) their labels or (2) the position of their first

occurrence in the sequence (Fig. 3). If the node IDs are not replaced,

the snippet is an exact sequence of activity. If the IDs are replaced by

their position in the sequence, then the snippet is analogous to tem-

poral motifs [24], but also captures edge deletions or insertions. The

snippet has duration δ = timestamp(u j) − timestamp(ui) and size

k equal to the number of edge-updates in the snippet. A (δmax,kmax)

activity snippet is an activity snippet with duration δ ≤ δmax and

size k ≤ kmax. In this work, events (§ 3.1.1) are activity snippets.

Problem Definition. Given these definitions, we focus on the

problem of persistent activity mining:

Problem 1 (Persistent Activity Mining). Given a network G
that continually evolves via an edge-stream S , measure the persis-

tence of each activity snippet x , i.e., for how long, how often, and how

regularly it has occurred.

3.2 Properties of Persistence

Based on our definitions, we present axioms and properties that a

persistence measure should follow. In the remaining sections, we

propose a principled persistence measure (§ 3.3) and prove that it

satisfies all the axioms and properties (§ 3.4). Although our theo-

retical definitions, properties, proposedmeasure and deriva-

tions are general and apply to any event x in a streamor time

series, in the context of Problem 1, x is an activity snippet.

Definition 1 (Persistence Measure). A persistence measure

P
(
x ; [ts , te]

)
: X×I → R≥0 is a function that defines the persistence

of an event x ∈ X in the interval [ts , te] ∈ I, and satisfies the

following axioms:

• A1: It is non-negative, and 0 iff there are no occurrences. Formally,

P
(
x ; [ts , te]

)
≥ 0, with equality iff |Ox | = 0.

• A2: As the interval becomes infinitely filled with unique occurrences,

persistence tends to infinity. That is, lim
| ˜Ox |→∞

P
(
x ; [ts , te]

)
= ∞.

• A3: Shifting all occurrences in time does not affect persistence.

Formally, P
(
x ′; [ts , te]

)
= P

(
x ; [ts , te]

)
, where x ′ is an event with

occurrences Ox ′ = {t + c : t ∈ Ox }, for some constant c ∈ R such

that the shifted points remain in [ts , te], i.e, tf + c ≥ ts , tl + c ≤ te .
• A4: Shrinking the interval of measurement towards [tf , tl]x leads to

higher persistence. Mathematically, P
(
x ; [ts , te]

)
≤ P

(
x ; [t ′s , t

′
e]
)
≤

P
(
x ; [tf , tl]x

)
, for ts ≤ t ′s ≤ tf and te ≥ t ′e ≥ tl . The equality

holds for ts = t ′s = tf and te = t ′e = tl .

Besides these axioms, there are several properties that a good

persistence measures ought to follow. For use in presenting these

properties, let x̃n be a special class of event with n occurrences, all

of which are unique and uniformly spaced out over [tf , tl]x̃n , that

is, |Ox̃n | = | ˜Ox̃n | = n and дi = дj =
|[tf ,tl]x̃n |
|Γx̃n |

,∀дi ,дj ∈ Γx̃n .

• P1: For two events with n unique, uniformly-spaced occurrences,

persistence is larger for the event with occurrences spread over a

wider interval. Formally, for any x̃n
1
and x̃n

2
such that |[tf , tl]x̃n

1

| <

|[tf , tl]x̃n
2

|, it should hold that P
(
x̃n
1
; [ts , te]

)
< P

(
x̃n
2
; [ts , te]

)
.

• P2: For two events with unique, uniformly-spaced occurrences

spread out over the same interval, persistence is larger for the

event with more occurrences. Mathematically, for any x̃n and

x̃n+k such that [tf , tl]x̃n = [tf , tl]x̃n+k , the persistence measure

should satisfy P
(
x̃n ; [ts , te]

)
< P

(
x̃n+k ; [ts , te]

)
,∀k ≥ 1.

• P3: The persistence of an event with n unique occurrences in an

interval is maximized iff the occurrences are spread out uniformly.

Formally, for any x and x̃n such that |Ox | = | ˜Ox | = | ˜Ox̃n | = n
and [tf , tl]x = [tf , tl]x̃n , the persistence measure should satisfy

P
(
x ; [ts , te]

)
≤ P

(
x̃n ; [ts , te]

)
, with equality iff Γx = Γx̃n , ∀n > 2.

3.3 Proposed Persistence Measure

Family of Persistence Measures. The axioms and properties

point to three main components of persistence: the width of the in-

terval in which occurrences fall, the frequency, and the distribution

of occurrences. We thus propose a family of persistence measures

P
(
x ; [ts , te]

)
≜ f

(
W

(
x ; [ts , te]

)︸ ︷︷ ︸
width

, F
(
x ; [ts , te]

)︸ ︷︷ ︸
frequency

, S
(
x ; [ts , te]

)︸ ︷︷ ︸
spread

)
, (1)

whereW (·) is a function of the width of x ’s interval of occurrences
[tf , tl]x , F (·) is a function of the number of occurrences, S(·) is a
function of how uniformly the points are spread out over [tf , tl]x ,
and f (·) is a function that combines these components.

3

A Persistence Measure. There are a number of ways to construct

the functionsW (·), F (·), and S(·), and to combine them. We propose

one intuitive persistence measure within the family described above

and show that it satisfies all the axioms and properties (§ 3.4).

First, we defineW (·) as the percentage of the interval width that

is covered by the occurrences of x :

W
(
x ; [ts , te]

)
≜
|[tf , tl]x | + 1

|[ts , te]| + 1
, (2)

where we add one in the numerator and denominator so that they

are non-0 when tf = tl or ts = te . For |Ox | = 0, we defineW (·) = 0.

Second, we define F (·), the function of frequency, as the loga-

rithm of the number of occurrences |Ox | to: (a) prevent the term

from dominating over the others (which can be more than an or-

der of mangitude smaller), and (b) naturally capture diminishing

returns. Formally,

F
(
x ; [ts , te]

)
≜ log

10

(
|Ox | + 1

)
, (3)

where we add one to ensure that the logarithm is well-defined in

the absence of occurrences.

Third, for S(·), to capture how regularly the occurrences are

spread, we model the distribution of the gaps Γx = (д1, . . . ,д | ˜Ox |−1
)

in a principled way via Shannon entropy [8]. Entropy measures the

amount of randomness in a distribution, and when the distribution

has a fixed number of outcomes in its support, this essentiallymeans

it measures the distribution’s uniformity. The gaps Γx between

occurrences (§ 3.1.1) normalized by the interval width |[tf , tl]x |
define a probability mass function with entropy

H (Γx) ≜ −
∑
дi ∈Γx

дi
|[tf ,tl]x |

log
дi

|[tf ,tl]x |
. (4)

As is standard in information theory, we define 0 log 0 = 0 (e.g.,

multiple occurrences at the same time giving дi = 0), and we use

log base 2. In order to remove the dependency on the number of

occurrences (since this is captured by F) and make this a measure

of spread, we normalize by the maximum entropy log(|Γx |) [8]:

S
(
x ; [ts , te]

)
≜

{ H (Γx)
log |Γx |

+ 1, |Γx | > 1

1, |Γx | ∈ {0, 1}
, (5)

where we add one since entropy is 0 if there are 0 or 1 gaps.

Since the terms defined above have different units, we combine

them into one function as follows:

P
(
x ; [ts , te]

)
≜W

(
x ; [ts , te]

)α
F
(
x ; [ts , te]

)β
S
(
x ; [ts , te]

)γ
, (6)

where the finite exponents α , β , γ ∈ (0,∞) can be used for assign-

ing different weights to the components, depending on the goals

of a particular application (e.g., γ > 1 can help events with low

frequency but high regularity to be discovered).

3.4 Theoretical Analysis

We now show that Eq. (6) is a principled persistence measure

that satisfies all axioms and properties. We also discuss a recently-

proposed persistence heuristic, which violates key axioms.

Lemma 1. If x has occurred at least once, |Ox | > 0, then our

proposed measure is positive: P
(
x ; [ts , te]

)
> 0, ∀ α, β,γ ∈ (0,∞).

Proof. W
(
x ; [ts , te]

)
> 0 since |[ts , te]| + 1 ≥ |[tf , tl]x | + 1 > 0.

Since |Ox | > 0, F
(
x ; [ts , te]

)
> 0. If |Ox | ∈ {1, 2}, then |Γx | ∈ {0, 1},

so S
(
x ; [ts , te]

)
= 1 > 0 by definition. If |Ox | > 2, log |Γx | > 0

and the well-known property of entropy, H (Γx) ≥ 0 [8], implies

S
(
x ; [ts , te]

)
> 0. For α, β,γ > 0, each component is still greater

than 0 and so is their product P
(
x ; [ts , te]

)
. □

Theorem 1. P
(
x ; [ts , te]

)
as defined in Eq. (6) satisfies all the

axioms, and thus is a persistence measure.

Proof. We show that P
(
x ; [ts , te]

)
is a persistence measure by

proving that it satisfies Axioms A1-A4. Since α, β,γ ∈ (0,∞) do
not affect the results, we omit them from the proofs for readability.

• Axiom A1. If |Ox | = 0, then P
(
x ; [ts , te]

)
= 0 · 0 · 1 = 0. If

|Ox | > 0, then P
(
x ; [ts , te]

)
> 0, by Lemma 1. Therefore, since

|Ox | ≥ 0, if P
(
x ; [ts , te]

)
= 0, then |Ox | = 0.

• Axiom A2. Since |[tf , tl]x | ≤ |[ts , te]|,W
(
x ; [ts , te]

)
≤ 1. Also

H (Γx) ≤ log(|Γx |) [8], so S
(
x ; [ts , te]

)
≤ 2. Thus, these bounded

terms do not affect the limit, and lim
| ˜Ox |→∞

log
10
(|Ox | + 1) = ∞.

Thus, unaffected by α , β , γ ∈ (0,∞), lim
| ˜Ox |→∞

P
(
x ; [ts , te]

)
= ∞.

• Axiom A3. First,W (x ′, [ts , te]) =
tl+c−tf −c+1

te−ts+1 =
tl−tf +1
te−ts+1 =

W
(
x ; [ts , te]

)
. Also, |Ox ′ | = |Ox |, so F (x ′; [ts , te]) = F

(
x ; [ts , te]

)
.

Each new gap д′i = ti+1 +c − ti −c = ti+1 − ti = дi (§ 3.1.1), so shift-
ing the occurrences does not change their spread: S(x ′; [ts , te]) =
S
(
x ; [ts , te]

)
. As a result, the persistence remains the same.

• Axiom A4. By definition, ts ≤ t ′s ≤ tf and te ≥ t ′e ≥ tl ,

so tl − tf ≤ t ′e − t
′
s ≤ te − ts . This implies thatW

(
x ; [ts , te]

)
≤

W (x ; [t ′s , t
′
e]) ≤W (x ; [tf , tl]x), with equality iff tf = ts and tl = te .

Since all occurrences fall in [tf , tl]x by definition, the frequency and

spread terms remain the same upon shrinking the measurement

interval. Therefore, P
(
x ; [ts , te]

)
≤ P(x ; [t ′s , t

′
e]) ≤ P(x ; [tf , tl]x),

with equality iff tf = ts and tl = te . □

Theorem 2. Our persistence measure P
(
x ; [ts , te]

)
, Eq. (6), satis-

fies the three desired properties P1-P3.

Proof. We prove each property separately:

• Property P1. First, since |Ox̃n
1

| = |Ox̃n
2

| = n, F
(
x̃n
1
; [ts , te]

)
=

F
(
x̃n
2
; [ts , te]

)
. Also, for |Γx̃n

1

| = |Γx̃n
2

| = n−1 uniform gaps,H (Γx̃n
1

) =

H (Γx̃n
1

) = log(n − 1). Thus, S
(
x̃n
1
; [ts , te]

)
= S

(
x̃n
2
; [ts , te]

)
. Since

|[tf , tl]x̃n
1

| < |[tf , tl]x̃n
2

| and |[ts , te]| is fixed, W (x̃n
1
; [ts , te]) <

W
(
x̃n
2
; |[ts , te]|

)
. Therefore, P

(
x̃n
1
; [ts , te]

)
< P

(
x̃n
2
; [ts , te]

)
.

• Property P2. We prove this by case. For n = 0, P(x̃0; [ts , te]) =

0 < P(x̃k ; [ts , te]) by Axiom A1. For n ≥ 1, W (x̃n ; [ts , te]) =

W (x̃n+k ; [ts , te]), since [tf , tl]x̃n = [tf , tl]x̃n+k . If n = 1, then

S(x̃1; [ts , te]) = 1 ≤ S(x̃1+k ; [ts , te]) ≤ 2 and F
(
x̃1; [ts , te]

)
=

log
10
(2) < log

10
(2 + k) = F

(
x̃1+k ; [ts , te]

)
. For n > 1, because of

uniform gaps,H (Γx̃n) = log(|Γx̃n |) andH (Γx̃n+k) = log(|Γx̃n+k |) [8].

Thus, S(x̃n ; [ts , te]) = S
(
x̃n+k ; [ts , te]

)
= 2. Lastly, F

(
x̃n ; [ts , te]

)
<

F (x̃n+k ; [ts , te]). By combining the three terms, we prove the claim.

• Property P3. Since |Ox | = |Ox̃n |, F
(
x ; [ts , te]

)
= F

(
x̃n ; [ts , te]

)
.

Also, [tf , tl]x = [tf , tl]x̃n , soW
(
x ; [ts , te]

)
=W

(
x̃n ; [ts , te]

)
. More-

over, H (Γx) ≤ log(|Γx |), with equality iff the дi ∈ Γx ’s are uniform.

Thus, S
(
x ; [ts , te]

)
≤ 2 = S

(
x̃n ; [ts , te]

)
, with equality iff the gaps

дi ∈ Γx ’s are uniform, in which case Γx = Γx̃n . □

4

PersistenceHeuristic in Data Streams [9].A simple persistence

heuristic was proposed in [9]: an item in a data stream is considered

persistent if it occurs at least once in a large number of predefined,

equally-sized observation periods (intervals). We show that this

heuristic violates axiomsA2-A4 via counter-examples. As the num-

ber of unique occurrences tends to infinity, the heuristic tends to

the number of intervals, not infinity (A2 violation). If an item has

two occurrences in the same interval, they can be shifted such that

one falls in a new period, in which case the heuristic grows (A3

violation). Finally, for an item with two occurrences in different in-

tervals, after shrinking [ts , te] towards [tf , tl]x and re-dividing into

the predefined number of intervals, they could still fall in different

intervals. Thus persistence would not increase (A4 violation).

4 PROPOSED METHOD: PENMINER

With our proposed persistence measure in Eq. (6), and the defini-

tions in § 3.1, we can now define the offline and streaming (online)

versions of our problem precisely.

Problem 2 (Offline/Streaming Persistent Activity Min-

ing). Given an edge stream, S , a maximum duration δmax, and a

maximum snippet size kmax,

• [Offline] output the persistence P
(
x ; [start(S), end(S)]

)
• [Streaming]maintain the persistence P(x ; [start(S), t])

of every (δmax,kmax)-activity snippet x observed in the whole stream.

We next introduce our offline and streaming algorithms, oPEN-

miner and sPENminer, to solve this problem. We first discuss ex-

tracting all (δmax,kmax)-snippets from a stream S , followed by

the details of each variant. We give the main steps for PENminer,

which takes as a parameter which variant to use, in Algorithm 1,

and detailed pseudocode for reproducibility in § A.2.

Activity Snippet Extraction (line 2). Each time a new edge-

update u
new

arrives (at time t), the procedure ExtractNewSnip-

pets is called. The procedure maintains the window W , which

consists of all updates u that occurred within the last δmax time

units, and removes all others. It then adds the new update u
new

(which is 0 time-units in the past). In addition to maintaining the

window, the procedure extracts all valid snippets from the window.

A valid snippet must be connected, have duration δ ≤ δmax, and

size k ≤ kmax. Since all stale updates have been removed from W ,

δmax is already enforced. Any new snippet instance must contain

u
new

. The singleton snippet containing just u
new

is created, and

then snippets of size k = 2, . . . ,kmax are constructed smallest to

largest, such that the nodes in each snippet are connected.

Offline Algorithm (lines 4 and 8). For the offline version of Prob-

lem 2, oPENminer maintains the set of occurrences of each activity

snippet extracted from the stream. Then, when the end of the stream

is reached, it computes and outputs the persistence of each snippet x
in [start(S), end(S)] with Eq. (6) as P(x ; [start(S), end(S)]).

Streaming Algorithm (line 6). For the online version of Prob-

lem 2, there are two cases to handle: (1) update the persistence of

snippet x when it occurs at time t , and (2) return the correct persis-

tence of a snippet x if it is queried at any other time t . We maintain

in memory a constant amount of information on each snippet: the

total number of its occurrences, |Ox |, the number of gaps between

Algorithm 1 PENminer (S , δmax, kmax, ϕ, α , β , γ , variant)

Input: Stream S , max snippet duration δmax and size kmax, view ϕ ,
persistence exponents α , β , γ , the variant (oPENminer/sPENminer).

1: while u
new
∈ S do ▷ While there is a new update in the stream

2: for x ∈ ExtractNewSnippets(W , u
new

, t , ϕ) do
3: if variant is oPENminer then

4: Add the occurrence t of x to Ox .

5: else

6: Update P (x ; [start(S); t]) incrementally.

7: if variant is oPENminer then

8: Compute P (x ; [start(S), end(S)]) for each x observed.

occurrences, |Γx |, the time of its first and last occurrences, tf , tl ,
and its persistence when it last occurred, P(x ; [start(S), tl]).
•Case 1. UpdatingPersistenceUponOccurrence. Since there

is a new occurrence at the current time t and we maintain the first

occurrence of each snippet, we can compute the width function

W
(
x ; [ts , te]

)α
=
(

|[tf ,t]x |+1
|[start(S),t] |+1

)α
from Eq. (2). Since we main-

tain the number of occurrences, |Ox |, we can obtain the frequency

F
(
x ; [start(S); t]

)β
= log

10

(
|Ox |+1

)β
from Eq. (3). By maintain-

ing the number of gaps between occurrences, we know whether

|Γx | ∈ {0, 1} (in Eq. (5)) and can compute log |Γx |. In order to com-

pute H (Γx)—Eq. (4)—we show how the entropy of the distribution

induced by a snippet x ’s gap widths can be computed incrementally,

as new occurrences create new gaps. Specifically, the entropy when

a new gap is formed can be computed from (1) the previous entropy,

(2) the previous normalizing constant Z , and (3) the new gap дn+1.
This is stated in Thm. 3 and proved via the following two Lemmas.

Let pi ≜
дi
Z , where Z =

∑n
i=1 дi , be a probability mass function

on a set of n gaps, Γx , induced by normalizing each gap by Z .

Lemma 2. The entropy H (p) = logZ − 1

Z
∑n
i=1 дi logдi .

Lemma 3. For the new set of gaps Γ′x = Γx ∪ {дn+1}, and normal-

izing constant Z ′ = Z + дn+1, the corresponding pmf p′ has entropy

H (p′) = Z
Z ′ logZ

′ −
дn+1
Z ′ log

дn+1
Z ′ −

1

Z ′
∑n
i=1 дi logдi .

Proof. Both lemmas can be derived by algebraically expanding

the corresponding entropy definition and using Z =
∑n
i=1 дi . □

Theorem 3. H (p′) = H (p) + Z
Z ′ logZ

′ − logZ −
дn+1
Z ′ log

дn+1
Z ′ +(

1

Z −
1

Z ′

)
(logZ − H (p))Z , where H (p) is the entropy of p, Z is the

normalizing constant for p, and дn+1 is the new gap.

Proof. Let ∆ = H (p′) −H (p) be the change in entropy and X =∑n
i=1 дi logдi . By Lemmas 2-3, we obtain ∆ = Z

Z ′ logZ
′ − logZ −

дn+1
Z ′ log

дn+1
Z ′ +

(
1

Z −
1

Z ′

)
X . By Lemma 2, X = (logZ − H (p))Z .

Plugging, this into H (p′) = H (p) + ∆ completes the proof. □

The new gap дn+1 is the time from the previous occurrence of x
(which we know since we maintain tl) to the current time t . The
normalizing constant Z is the time from the first occurrence (tf) to
the previous occurrence (tl), both of which we maintain.

•Case 2. Querying PersistenceWithout aNewOccurrence.

Without a new occurrence, the frequency F (x ; [start(S), t])β

and spread S(x ; [start(S),t])γ do not change. From Eq. (2), we

compute the width function,W (x ; [start(S), t])α , by replacing

|[start(S), tl]| with |[start(S), t]| in the denominator.

5

5 EVALUATION

We investigate the following research questions across multiple

real networks (§ 5.1):

• RQ1 What does the relationship between frequency and

persistence reveal about activity and networks?

• RQ2 Can sPENminer find anomalies in real-time?

• RQ3 Can sPENminer process updates to a network at least

as quickly as they arrive, and how does oPENminer scale

with the number of edge updates in the stream?

In § 5.2 we investigate a core value of measuring persistence,

which is the relationship between frequency and persistence. Specif-

ically, we find that activity snippets with high persistence, but low

frequency tend to correspond to subtle yet regular activity, which

would be missed by measuring frequency alone. On the other hand,

snippets with high frequency, but low persistence tend to be bursty.

In § 5.3, we show how we can make analogous insights in real-

time with sPENminer, and accurately find both subtle and bursty

anomalies right when they occur. Finally, in § 5.4, we evaluate the

maximum duration δmax and maximum size kmax parameters, and

demonstrate that sPENminer processes edges in each stream 10K

to 360K times faster than the rate of that stream, and oPENminer

scales linearly with the number of edge-updates processed.

5.1 Data

We utilize a diverse set of evolving networks (Tab. 2), including

communication, transportation, computer, and social networks.

• The communication network Eu Email has timestamped edges

denoting emails sent within a European research institute [18].

• Columbus Bike, Chicago Bike, and Boston Bike are networks

encoding bike trips made in the bike-share systems in those

three cities [1]. Each node is a bike station. When a bike leaves

one station for another, an edge is inserted into the network;

when the bike arrives at its destination, it is deleted. Thus, the

networks capture en route bike-trips.

• Similarly, NYC Taxi [2] captures en route taxi trips in New York

City, but in this case, nodes are city zones rather than stations.

• Edges in the social network Reddit correspond to timestamped

references between subreddits (topical discussion boards) [18].

• DARPA IP [20] is an IP-IP network, where both normal network

traffic and malicious attack traffic is present. Edges denote inter-

actions between computers in the network.

• Stackoverflow [18] consists of interactions among users on the

website Stackoverflow. The interactions are between users, and

can be answers to questions, comments on questions, or com-

ments on answers.

Table 2: Description of edge streams: number of edge-updates, num-

ber of nodes, whether it has edge deletions, number of unique edges,

number of edge types, and average rate of the stream in updates/sec.

|S | |V | Del |E | E types rate (u/sec)

Eu Email 332,334 986 N 24,929 1 0.04

Columbus Bike 534,998 74 Y 2,951 1 0.02

Reddit 858,488 67,180 N 339,643 1 0.02

Darpa IP 4,554,344 25,525 N 68,910 1 78.5

Boston Bike 17,421,182 476 Y 81,508 1 0.05

Chicago Bike 33,331,104 712 N 171,651 1 0.25

Stackoverflow 63,497,050 2,601,977 N 36,233,450 3 0.27

NYC Taxi 3,077,990,404 265 Y 60,750 1 9.29

Figure 4: Boston (a) and Columbus (b) bike networks. Representa-

tive timelines from various parts of the PvF plots demonstrate how

persistent, bursty, and subtle activity can be identified.

5.2 RQ1: Persistent vs. Frequent

The relationship between frequency and persistence allows for a

more complete view of activity in networks. We show this via a

Persistence vs. Frequency, or PvF, plot of activity snippets, with

snippet frequency, |Ox |, in log-scale on the y-axis, and persistence

P(x ; [start(S), end(S)]) on the x-axis. Activity snippets with

unusually high persistence relative to their frequency fall towards

the lower-right of the plot. Those with unusually high frequency

relative to their persistence fall towards the upper-left. We call the

former type of activity snippet subtly persistent, and the latter

bursty (whether a single burst or periodic bursts). We analyze

persistent, subtly persistent, and bursty activity snippets in several

networks via PvF plots, and show what they correspond to in each

context. To see what the baseline of frequency would give, the

variation of points along the y-axis only can be studied.

5.2.1 Transportation Networks. Setup. We generate PvF plots for

bike trips in Boston, MA, Columbus, OH, and Taxi trips in New

York City (NYC) for the two weeks surrounding Hurricane Sandy

(10/22/12-11/05/12). We use view ϕ = ID. Since once a trip is com-

plete the rider leaves the bike/taxi, sequences of edges are not linked.

Thus, we set kmax = 1 (and δmax = 1), so that each activity snippet

corresponds to a single bike/taxi trip. Next, in social networks, we

use kmax > 1. We set α, β and γ for visual clarity, and discuss how

in the supplement on reproducibility (§ A.3).

Results. Results for Boston Bike and Columbus Bike are in Fig. 4.

The most persistent bike trips (black) are both frequent and per-

sistent. A representative timeline from each, where each tick is an

occurrence of the snippet, is shown in the lower-right of each plot.

In Boston, the most persistent trip is from Massachusetts Ave. in

front of MIT, up the street to outside the Central subway station.

This is a reasonable route for commuters to bike from MIT to the

subway. In both networks, bursts (orange) reveal new bike stations

opening. The new station in Boston opened right in front of MIT

and became immediately popular, which led to a large burst of

activity. With the station now established, its persistence should

grow over time. For comparison, we show a representative point

from the middle of the Columbus PvF plot, and a trip in Boston

that is more persistent than expected given its frequency (blue).

In NYC Taxi, the bursty and subtly persistent snippets (Taxi trips)

reveal which neighborhoods in NYC were most affected by Hurri-

cane Sandy (Fig. 5). The hurricane made landfall in NYC around

8pm EST on 10/29 (shownwith a dashed line). The bursty anomalies

(orange) all correspond to neighborhoods that were brought to a

6

Figure 5: Taxi trips in NYC with high frequency but low persistence

reveal neighborhoods thatwere brought to a standstill byHurricane

Sandy, while more persistent trips reveal those that were not.

stand-still during the storm. For example, the first trip shown is

from LaGuardia airport to the Lenox Hill neighborhood. Flights

were canceled en masse at LaGuardia prior to the hurricane, inter-

rupting trips even before the storm’s landfall. The second timeline

shows a trip from the Meatpacking District to Hudson Square. Both

neighborhoods are on the coast of Manhattan Island, and experi-

enced severe flooding. The decrease in trips prior to the storm is

likely due to businesses closing in preparation. Many of the subtly

persistent trips (blue) correspond to neighborhoods that were re-

silient despite the storm. The first example is Lenox Hill and East

Harlem. While these neighborhoods border the East River, they

extend inland, allowing plenty of roads for taxis to continue service

on. Lenox Hill hospital was also the subject of a study of the clinical

response to Hurricane Sandy [29]. Possibly, the continuity in taxi

trips was due to visits to the hospital. Similarly, the Upper West

Side extends into inner-Manhattan, and Washington Heights is a

significant distance north of where the hurricane made landfall.

Takeaways on Transportation.We find that subtly persistent

activity often reveals commutes, because of their high regularity.

This has applications in city planning, since commute routes can be

good options for introducing ride-share programs. We also find that

bursty activity often reveals major changes in the real world, such

as severe weather disturbances or new routes becoming possible.

5.2.2 Social Networks. Setup. We use the social network Stack-

overflow, where users interact by answering technical questions,

commenting on questions, and commenting on answers.We first an-

alyze a 3-month interval. For this analysis, we use the view ϕ = ID,

set kmax = 3, and δmax = 1hr. Secondly, we analyze the entire

dataset using ϕ = Order, with kmax = 3 and δmax = 15min. In the

latter scenario, the snippets we analyze are a superset of the 3-node,

3-edge temporal motifs studied in [24]. We plot, in orange, snippets

involving users commenting on questions, in black, those involving

users commenting on answers, and in blue, answering questions.

Results. Results are shown in Fig. 6. The timelines in (a) are for

activity snippets among specific users. The bursty anomaly (orange)

reveals users u72603 and u82199 (anonymized ids) commenting on

u82199’s answer 36 times over the course of 1hr in the 3-month in-

terval, then never interacting again. The timeline shown is zoomed-

in on for clarity. The most persistent snippets (one shown in black)

are users commenting on their own answers, suggesting that it

is unusual for the same two distinct users to interact persistently

over time. On the other hand, the subtly persistent anomaly (blue)

reveals u1950 regularly answering u55747’s questions. We show the

Figure 6: Stackoverflow Analysis. (a): ϕ = ID. Persistent snippets

usually correspond to users commenting on their own answers. The

bursty snippet reveals 36 back-and-forths between two users in 1hr.

The subtly persistent snippet reveals user u1950 regularly answer-

ing user u55747’s questions. (b): ϕ = Order. Discussions targeting

one user’s content and involving at least two users, occur with simi-

lar frequency for comments on Qs and As, but comments on Qs are

burstier—a distinction not captured by frequency alone.

persistent, bursty, and subtly anomalous snippets in (i)-(iii). We

give the PvF plot used to identify these snippets in § A.4.

The right plot uses the view ϕ = Order, where any users can

form an occurrence of the activity snippet. Remarkably, we find

that activity involving the three interaction types (commenting

on questions, commenting on answers, and answering questions)

fall in distinct places on the plot. Activity involving comments

on questions tends to fall in the bursty region of the plot, while

answers are the most subtly persistent. To better understand the

phenomenon, we zoom in on the region shown in the upper-left. We

observe that most activity snippets in this box target a single user

(i.e., all discussion is directed towards that user), and involve at least

two distinct users. We give examples in (iv)-(v) of Fig. 6. In (iv), a

user comments on another’s post, the second user responds, and the

original user comments again. In (v), the second user responds twice

to the original comment. These snippets capture natural, technical

discussions among users. Remarkably, these discussions center

around questions (orange) and answers (black) at roughly equal

frequencies, but they occur with higher persistence for answers. We

conjecture that this is because, when a question is asked, it triggers

a flurry of comments on it; but once the question is answered, these

tend to die out. On the other hand, comments on answers persist,

because new users may have the same question, and have follow-

up questions, even months after the question has been answered.

Since both have indistinguishable frequencies (10
5
-10

7
), this subtle

difference in behavior is not revealed by frequency alone.

Takeaways on Social Networks. We find that subtly persis-

tence activity can reveal users who do not interact often, but do

regularly—i.e., similar users who are missed when only looking

at how many times they interact. We also find that some types of

posts promote continual activity, while others trigger bursts.

5.3 RQ2: Anomalies in Real Time

We next demonstrate that bursty and subtly persistent snippets can

be identified in real time, right when they occur.

5.3.1 Generating Anomaly Scores. To identify anomalies automat-

ically in real-time (without visually inspecting PvF plots as in

§ 5.2), we use the following process. When an activity snippet x
appears in the stream at time t , we generate a 2D point <frequency,

7

persistence>, or [F (x ; [start(S), t]), P(x ; [start(S), t])], corre-
sponding to the dimensions of a PvF plot. Then, any streaming

anomaly detection method can be applied. We use the Random Cut

Forest (RCF) method [13], which gives a real-valued anomaly score

for each point in a stream. For implementation details, see § A.5.

5.3.2 Real-timeQualitative Anomaly Detection (PvF). Setup.We

analyze two networks: Reddit and NYC Taxi trips from the first

two months of 2019. For each, we choose ground-truth snippets

by choosing a subtly persistent anomaly, a bursty anomaly, and a

snippet corresponding to a point from the middle of the PvF plot.

We use sPENminer with kmax = 1, and set (α, β,γ) values, which
we give in § A.8. At each time t , we compute the anomaly scores of

each ground-truth snippet (§ 5.3.1), and compare the scores to the

median and standard deviation of the anomaly scores of all points

seen to that point. We label an activity snippet at time t as a level
1, 2, or 3 anomaly if it is 1 to 2, 2 to 3, or 3+ standard deviations

above the median score respectively.

Results. The results in Fig. 7 for Reddit (left) and NYC Taxi (right)

show level 1, 2, and 3 anomalies colored green, orange, and maroon.

The subtly persistent snippet in Reddit corresponds to the subred-

dit r/electronic_cigarette referencing r/ecrpoker. This is the 3rd

most persistent snippet overall, but only the 252nd most frequent.

References between these subreddits occur remarkably regularly.

Upon investigation, we found that r/ecrpoker was formed by a

popular user in r/electronic_cigarette. We conjecture that the

snippet corresponds to this user, or their followers, promoting the

content of the other subreddit. The bursty anomaly corresponds

to r/nightly_pick referencing r/hockey, presumably picking win-

ners for each night’s hockey game. The bursts align with hockey

seasons. sPENminer consistently identifies this activity snippet as

anomalous. Furthermore, the anomaly score decreases as expected

over time, since as the bursts return yearly during hockey season,

the snippet becomes more persistent. The third snippet is neither

bursty nor regular, and it is correctly not flagged as an anomaly.

In NYC, the subtly persistent anomaly reveals a taxi trip from

Kew Gardens Hills in Queens, to Manhattan, near the United Na-

tions building. The taxi trip is repeated every day shortly after

midnight, and is almost never taken at any other time. The na-

ture of the trip is unknown, but surprisingly regular. The score, as

expected, grows over time, as the continued regularity increases

anomalousness. The bursty anomaly captures taxi trips departing

from and arriving at the zone containing the NYC Taxi & Limousine

Commission. The Taxi Commission inspects taxis and is open 5 days

a week, which suggests that the bursts correspond to test-drives of

taxis for inspection during business hours. sPENminer consistently

identifies these bursts. Again, the third snippet is neither bursty

nor regular, and is not often flagged as an anomaly.

5.3.3 Real-time Quantitative Anomaly Detection. Setup. We quan-

titatively analyze sPENminer’s performance at identifying both

subtle and bursty anomalies. For subtle anomalies, we use three

months of Chicago Bike, from 01/2014 to 03/2014, and inject 50

synthetic bike trips that simulate infrequent, but lasting and sur-

prisingly regular traffic, analogous to the first taxi trip in Fig. 7.

We describe the exact injection procedure in § A.6. Each of the

50 anomalous trips occurs repeatedly, and the task is to identify

Figure 7: With PENminer, we are able to identify anomalies in real-
time. Not only can we find bursty anomalies, but also subtly per-
sistent anomalies: those that occur regularly and continually, but

with frequency too low to be discovered by aggregate count alone.

Anomaly levels capture how anomalous an occurrence is § 5.3.2.

Table 3: Results for identifying subtly persistent and bursty anom-

alies. Statistically significant results are marked with an “∗”. sPEN-

miner outperforms all baselines at identifying subtly persistent

anomalies, which is not a well-studied problem. sPENminer also

performs competitively with baselines on bursty anomaly detec-

tion, leading to the best overall performance (avg AUC).

Metric Freq SedanSpot [11] Midas-R [7] DS [9] sPENminer

S
u
b
t
l
e

AUC 0.8325±0.02 0.4519±0.01 0.4520±0.02 0.7435±0.03 0.9309±0.00∗
F1@100 0.0505±0.01 0.0001±0.00 0.0000±0.00 0.0076±0.00 0.0508±0.01
F1@1K 0.1812±0.00 0.0035±0.00 0.0003±0.00 0.0378±0.01 0.2580±0.03∗
F1@2K 0.1572±0.01 0.0098±0.00 0.0002±0.00 0.0561±0.01 0.3292±0.03∗

B
u
r
s
t
y

AUC 0.8450±0.00 0.6390±0.00 0.9434±0.00∗ 0.8632±0.00 0.8359±0.01
F1@500K 0.3089±0.00∗ 0.2745±0.00 0.3019±0.00 0.3063±0.00 0.2978±0.00
F1@1M 0.5351±0.00∗ 0.4527±0.00 0.5274±0.00 0.5295±0.00 0.5169±0.00
F1@2M 0.7184±0.00 0.6309±0.00 0.8378±0.00∗ 0.8066±0.00 0.7770±0.01

Avg AUC 0.8388 (2) 0.5455 (5) 0.6977 (4) 0.8034 (3) 0.8834 (1)

the occurrences of all 50 bike trips. We average results over ten

random injection sets. For bursty anomalies, we use the DARPA

IP network commonly used for the task [7, 11]. In this dataset, 2.7

million edges correspond to various bursty network attacks (e.g.,

denial of service). The goal is to identify edges that are part of these

attacks. We use the same α, β , and γ as § 5.3.2, since we found them

useful for visually identifying bursty and subtly persistent snippets.

Baselines. (1) Freq scores snippets as their number of occurrences,

divided by the total number of all snippet occurrences. It can

be thought of as [24] with motifs extended to activity snippets.

(2) SedanSpot [11] and (3) Midas-R [7], state-of-the-art methods

for bursty anomalies in edge-streams, output an anomaly score for

each edge update. We set parameters as in the respective papers,

and use the authors’ code. (4) DS adapts the heuristic persistence

of an item in a data-stream [9]. We apply DS exactly as PENminer,

but replace the persistence in the 2D point with their heurisitc (de-

scribed in § 3.4). For consistency, we follow the authors’ suggestion

of dividing the stream into 60 measurement periods, even though

this unrealistically assumes that the stream length is known a priori.

Results.We give results in Tab. 3. sPENminer outperforms base-

lines at finding subtly persistent anomalies. Simultaneously, for

bursty anomalies, it performs competitively with Midas-R, which

is designed specifically for the task of finding bursty anomalies.

On the other hand, the methods targeting bursts do not perform

competitively at finding subtle anomalies. All but one result are

statistically significant at a 0.01 p-value in a paired t-test.

8

Figure 8: sPENminer’s performance when varying δmax, kmax on sev-

eral datasets. Across all parameters, sPENminer processes edges in

each stream 10K-360K times faster than the rate of the stream.

5.4 RQ3: Efficiency and Scalability

We evaluate whether sPENminer can process edges at least as

quickly as they arrive in a stream, while allowing snippets to be

reasonably sized (kmax) and take a reasonable amount of time to

form (δmax). We then analyze how oPENminer scales with the

number of edge-updates. We discuss hardware in § A.7.

5.4.1 sPENminer Efficiency. Setup. To evaluate sPENminer’s ef-

ficiency over different δmax and kmax settings, we create plots for

kmax ∈ {1, 2, 3}. In each, we fix kmax and vary δmax ∈ {60, 120, 180,

300, 600, 900, 1800}. We show edges processed per second for each

parameter, for all datasets with rates less than 1 update/sec (since

streams with significantly different rates are not comparable). Each

point is averaged over 5 random intervals of 100K edge-updates

(the same intervals across parameters).

Results. We show the results in Fig. 8. For kmax = 1, activity

snippets have duration δ = 0, which is why in the first plot, the

edges processed per second is consistent over all δmax. Across all

streams, and parameters, sPENminer processes edge-updates 10K

to 360K times faster than the rate of the corresponding stream.

Figure 9: oPENminer scales

linearly as the network grows.

5.4.2 oPENminer Scalability.

Setup.Weevaluate how oPEN-

miner scales with increasingly

more edge-updates in Stack-

overflow, our network with

the most edges and nodes. We

process the first 100K, 500K,

1M, 10M, 25M, and 50M edge-

updates 5 times, and report the

average runtime in seconds

(Fig. 9). We fix δmax = 600 sec (10 min) and evaluate kmax ∈ {1, 2, 3}.

Result. oPENminer scales linearly as the network grows.

6 CONCLUSION

In this paper, we propose mining persistent activity in continually

evolving networks. Our precise, theoretical definition of persis-

tence captures, beyond the aggregate number of occurrences, for

how long and how regularly the activity has occurred. We propose

PENminer (both offline and streaming variants) to measure the per-

sistence of activity in evolving networks, and use it to gain a better

understanding of networks by revealing activity that frequency

alone could not, from infrequent but surprisingly regular trips in

traffic networks to heated conversations in social networks. Fu-

ture work includes further developing persistence-based anomaly

detection, and techniques for automatic parameter tuning (α, β, γ).

ACKNOWLEDGEMENTS

This work is supported by an NSF GRFP Fellowship, the NSF un-

der Grant No. IIS 1845491, Army Young Investigator Award No.

W911NF1810397, and Adobe, Amazon, and Google faculty awards.

REFERENCES

[1] Motivate International Inc. https://www.motivateco.com/where-we-do-it/.

[2] NYC Taxi & Limousine Commission. https://www1.nyc.gov/site/tlc/about/tlc-

trip-record-data.page.

[3] Ehab Abdelhamid, Mustafa Canim, Mohammad Sadoghi, Bishwaranjan Bhat-

tacharjee, Yuan-Chi Chang, and Panos Kalnis. Incremental frequent subgraph

mining on large evolving graphs. IEEE TKDE, 29(12):2710–2723, 2017.

[4] Charu C Aggarwal, Yao Li, Philip S Yu, and Ruoming Jin. On dense pattern

mining in graph streams. PVLDB, 3(1-2):975–984, 2010.

[5] Rezwan Ahmed and George Karypis. Algorithms for mining the coevolving

relational motifs in dynamic networks. ACM TKDD, 10(1):1–31, 2015.

[6] Cigdem Aslay, Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales,

and Aristides Gionis. Mining frequent patterns in evolving graphs. In CIKM,

pages 923–932. ACM, 2018.

[7] Siddharth Bhatia, Bryan Hooi, Minji Yoon, Kijung Shin, and Christos Faloutsos.

MIDAS: Microcluster-Based Detector of Anomalies in Edge Streams. In AAAI,

2020.

[8] Thomas M Cover and Joy A Thomas. Elements of information theory. Wiley, 2012.

[9] Haipeng Dai, Muhammad Shahzad, Alex X Liu, and Yuankun Zhong. Finding

persistent items in data streams. PVLDB, 10(4):289–300, 2016.

[10] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis.

Grami: Frequent subgraph and pattern mining in a single large graph. PVLDB,

7(7):517–528, 2014.

[11] Dhivya Eswaran and Christos Faloutsos. Sedanspot: Detecting anomalies in edge

streams. In ICDM, pages 953–958. IEEE, 2018.

[12] Wenjie Feng, Shenghua Liu, Danai Koutra, Huawei Shen, and Xueqi Cheng.

Unified dense subgraph detection. In ECML/PKDD, 2020.

[13] Sudipto Guha, Nina Mishra, Gourav Roy, and Okke Schrijvers. Robust random

cut forest based anomaly detection on streams. In ICML, pages 2712–2721, 2016.

[14] Saket Gurukar, Sayan Ranu, and Balaraman Ravindran. Commit: A scalable

approach to mining communication motifs from dynamic networks. In SIGMOD,

pages 475–489. ACM, 2015.

[15] Chuntao Jiang, Frans Coenen, and Michele Zito. A survey of frequent subgraph

mining algorithms. The Knowledge Engineering Review, 28(1):75–105, 2013.

[16] Chrysanthi Kosyfaki, Nikos Mamoulis, Evaggelia Pitoura, and Panayiotis

Tsaparas. Flow motifs in interaction networks. In EDBT, 2018.

[17] Lauri Kovanen, Márton Karsai, Kimmo Kaski, János Kertész, and Jari Saramäki.

Temporal motifs in time-dependent networks. JSTAT, 2011(11):P11005, 2011.

[18] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset

collection. http://snap.stanford.edu/data, June 2020.

[19] Rong-Hua Li, Jiao Su, Lu Qin, Jeffrey Xu Yu, and Qiangqiang Dai. Persistent

community search in temporal networks. In ICDE, pages 797–808. IEEE, 2018.

[20] Richard Lippmann, Robert K Cunningham, David J Fried, Isaac Graf, Kris R

Kendall, Seth E Webster, and Marc A Zissman. Results of the darpa 1998 offline

intrusion detection evaluation. In RAID, volume 99, pages 829–835, 1999.

[21] Paul Liu, Austin R. Benson, and Moses Charikar. Sampling methods for counting

temporal motifs. In WSDM, 2019.

[22] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph summarization

methods and applications: A survey. ACM Comput. Surv., 51(3), 2018.

[23] Ron Milo, Shai S Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, D. Chklovskii, and

Uri Alon. Network motifs: simple building blocks of complex networks. Science,

298 5594:824–7, 2002.

[24] Ashwin Paranjape, Austin R Benson, and Jure Leskovec. Motifs in temporal

networks. In WSDM, pages 601–610. ACM, 2017.

[25] Abhik Ray, Larry Holder, and Sutanay Choudhury. Frequent subgraph discovery

in large attributed streaming graphs. In BigMine, pages 166–181, 2014.

[26] Konstantinos Semertzidis, Evaggelia Pitoura, Evimaria Terzi, and Panayiotis

Tsaparas. Finding lasting dense subgraphs. DAMI, 33(5):1417–1445, 2019.

[27] Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos.

Timecrunch: Interpretable dynamic graph summarization. In KDD, pages 1055–

1064. ACM, 2015.

[28] Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, and Eli Upfal. Triest:

Counting local and global triangles in fully dynamic streams with fixed memory

size. ACM TKDD, 11(4):1–50, 2017.

[29] Maciej Walczyszyn, Shalin Patel, Maly Oron, and Bushra Mina. Battling super-

storm sandy at lenox hill hospital: When the hospital is ground zero. Critical

care clinics, 35(4):711–715, 2019.

[30] Qiankun Zhao, Yuan Tian, Qi He, Nuria Oliver, Ruoming Jin, and Wang-Chien

Lee. Communication motifs: a tool to characterize social communications. In

CIKM. ACM, 2010.

9

https://www.motivateco.com/where-we-do-it/
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
http://snap.stanford.edu/data

A SUPPLEMENT ON REPRODUCIBILITY

A.1 Complexity Analysis

In the special case of kmax = 1, the window W need not be main-

tained (only singleton snippets are extracted). Thus, the per-update

and total complexity (of oPENminer) are O(1) and O(|S |) respec-
tively. We now discuss kmax > 1. To process a new update u

new
,

the only non-constant cost comes from extracting new snippets in

line 4 (lines 5-8 are O(1)). Let µ be the average rate of the stream

S in updates per second. Then the average number of updates in

a window W of widthw = δmax seconds is equal to µ · δmax. Lines

14-16 are O(µ · δmax). While new snippets must be connected (cf.

§ 4), in the worst case all previous µ · δmax updates are connected

with u
new

. Thus, there are O
(∑kmax

k=1
(µ ·δmax

k−1
))
= O

((µ ·δmax

kmax−1

))
new

snippets to extract (lines 18-20), which dominatesO(µ · δmax). Con-

sequently, the per-update time can be controlled by choosing δmax

to be reasonable based on the stream’s rate. For oPENminer, the

total time complexity to process |S | updates is O(|S |
(µ ·δmax

kmax−1

)
).

A.2 Detailed Pseudocode

Algorithm 2 PENminer (S , δmax, kmax, ϕ, α , β , γ , variant)

Input: Stream S , max snippet duration δmax and size kmax, view ϕ ,
persistence exponents α , β , γ , the variant (oPENminer/sPENminer).

1: w ← δmax ▷ The window size enforces the maximum duration

2: W ← ∅ ▷ Window is empty initially

3: while u
new
∈ S do ▷ While there is a new update in the stream

4: for x ∈ ExtractNewSnippets(W , u
new

, t , ϕ) do
5: if variant is oPENminer then

6: Ox ← Ox ∪ {t } ▷ Add the new occurrence’s timestamp

7: else

8: Update P (x ; [start(S), t]) via Thm. 3

9: if variant is oPENminer then

10: for each x do

11: Compute P (x ; [start(S), end(S)])
12: procedure ExtractNewSnippets(W , u

new
, t , ϕ)

13: X
extracted

← {ϕ(u
new
)} ▷ Add the singleton snippet for u

new

14: for u ∈ W do

15: if t − timestamp(u) > w then

16: W ← W \ {u } ▷ Remove stale updates

17: W ← W ∪ {u
new
} ▷ Add the new update

18: for k = 2, . . . , kmax do

19: for each new size k snippet x do

20: X
extracted

← X
extracted

∪ {x}

21: return X
extracted

A.3 Choosing α , β , γ
This section provides analysis of the exponents α , β , and γ . At the
end of the section, we give suggestions for practitioners.

A.3.1 Rank Correlation Between Persistence and Components. We

first show how varying the exponents affects how much each com-

ponent contributes to persistence. To do so, we compare the ranking

of snippets in descending order onW (·), F (·), and S(·), with the

ranking in descending order based on persistence P(·). We use

Kendall-Tau rank-correlation to compare rankings. For each com-

ponent of persistenceW (·), F (·), and S(·), we vary its corresponding

Figure 10: Kendall Tau rank correlation between snippets ranked

by components of persistence and persistence itself, over various

values of exponents. In general, as one exponent is increased, and

the others fixed, the corresponding component becomes more cor-

related with persistence.

(a) α ∈ {0.2, 0.5, 1, 2.0, 5.0}

(b) β ∈ {0.2, 0.5, 1, 2.0, 5.0}

(c) γ ∈ {0.2, 0.5, 1, 2.0, 5.0}

Figure 11: PvF plots for Columbus Bike varying each exponent in

{0.2, 0.5, 1, 2.0, 5.0}, while fixing the other two at 1. The main take-

aways are that small values of β (0.2 or 0.5) increase the spread of

points, while increasingγ (2.0 or 5.0) emphasizes points in the lower

left (i.e., very regular snippets). Thus, it is generally effective to set

α = 1, β ∈ (0, 1), and γ ∈ (1,∞).

exponent α , β , orγ over the values {0.2, 0.5, 1, 2.0, 5.0}, while fixing

the other two exponents at 1. Each exponent has a plot in Fig. 10

showing the rank-correlation of that component with persistence.

In general, as the exponent corresponding to a component is in-

creased, that component becomes more correlated with persistence,

while the others become less correlated.

A.3.2 Effect on PvF Plots. We next show how varying the expo-

nents changes PvF plots visually. Again, for each component of

persistenceW (·), F (·), and S(·), we vary its corresponding exponent
α , β , or γ over {0.2, 0.5, 1, 2.0, 5.0}, while fixing the others at 1. We

show plots for these exponents in Fig. 11. The value in the upper-left

corner is the maximum frequency, and lower-right the maximum

persistence. SinceW (·) ∈ [0, 1], varying α does not change the

range of persistence values. In contrast, F (·) is unbounded, and
increasing it can cause the range of persistence values to grow

significantly. The main takeaways are that small values of β (0.2 or

0.5) increase the spread of points, while increasing γ (2.0 or 5.0) em-

phasizes points in the lower left (very regular snippets). We chose

exponents to emphasize the snippets of interest in our experiments.

A.3.3 Sensitivity on Anomaly Detection. We give anomaly detec-

tion results in Tab. 4, showing the effect of downweighting each

exponent to 0.2. The results are mostly stable across exponents.

The main exception, (0.2, 1, 1), leads to considerably better results

on subtle anomalies. SinceW (·) ∈ [0, 1], α = 0.2 up-weightsW (·).

10

Table 4: Additional results at identifying subtly persistent and

bursty anomalies, showing the effect of parameters (α , β , γ).

Metric (1, 1, 1) (0.2, 1, 1) (1, 0.2, 1) (1, 1, 0.2)

S
u
b
t
l
e

AUC 0.709 ± 0.02 0.801 ± 0.02 0.712 ± 0.02 0.686 ± 0.03

F1@100 0.006 ± 0.00 0.009 ± 0.00 0.005 ± 0.00 0.007 ± 0.00

F1@1K 0.028 ± 0.00 0.051 ± 0.01 0.029 ± 0.00 0.028 ± 0.01

F1@2K 0.042 ± 0.01 0.076 ± 0.01 0.043 ± 0.01 0.041 ± 0.01

B
u
r
s
t
y

AUC 0.856 ± 0.01 0.867 ± 0.01 0.831 ± 0.01 0.853 ± 0.01

F1@500K 0.307 ± 0.00 0.307 ± 0.00 0.307 ± 0.00 0.307 ± 0.00

F1@1M 0.525 ± 0.00 0.527 ± 0.00 0.516 ± 0.01 0.524 ± 0.00

F1@2M 0.763 ± 0.01 0.783 ± 0.01 0.742 ± 0.02 0.756 ± 0.01

Figure 12: The plots used to extract ground-truth anomalies in

§ 5.3.2. Orange is the bursty anomaly, blue the subtly persistent

anomaly, black the neither bursty nor subtly persistent snippet.

Since the subtly persistent anomalies (§ A.6) occur throughout the

stream, we conjecture that α = 0.2 increases their anomalousness.

A.3.4 Advice for Practitioners. For visual clarity, we found it gen-

erally effective to set α = 1, β ∈ (0, 1), and γ ∈ (1,∞)—cf. A.3.2. If
practitioners wish to analyze PvF plots visually, we recommend

these values, especially γ > 2, to help discover subtly regular snip-

pets. If other tasks are of interest, the exponents should be tuned

for that task. Indeed, setting α , β , γ automatically for tasks like

anomaly detection is an important direction for future work.

A.4 Choosing Activity Snippets

Figure 13: The plot used to extract

ground-truth for Stackoverflow in

§ 5.2.2. Orange is the bursty anom-

aly, blue the subtly persistent anom-

aly, and black a persistent snippet.

We discuss our choices

of activity snippets for

analysis in § 5.2.2-§ 5.3.2.

A.4.1 Stackoverflow. For

Stackoverflow, we used

the ground-truth points

shown in Fig. 13. The

snippets corresponding

to the orange, blue, and

black points are visual-

ized in Fig. 6(a), (i)-(iii).

A.4.2 Reddit and NYC

Taxi. For Reddit and

NYC Taxi, we used the

ground-truth snippets in Fig. 12. The orange snippet for Red-

dit is r/nightly_pick referencing r/hockey, the blue is for

r/electronic_cigarette referencing r/ecrpoker, and the black is

for r/bestof referencing r/personalfinance. For NYC, orange is a

trip from zone207 to zone207, blue is a trip from zone135 to zone170,

and black a trip from zone234 to zone198.

A.5 Using Random Cut Forests

We discuss details of using Random Cut Forests for anomaly de-

tection in § 5.3. Throughout the experiments, we use 10 trees in

the random forest, with each having a maximum depth of 256. To

enforce the maximum size of trees, when the maximum size is

reached, before adding a new point, we chose a leaf at random

to remove. Since activity snippets can reoccur, when scoring a

reoccurrence we make one minor adaption. When we score the

point [F (x ; [start(S), t]), P(x ; [start(S), t])], if we have already
scored snippet x at some prior time t ′ < t , then we first remove the

point [F (x ;[start(S), t ′]), P(x ;[start(S), t ′])] corresponding to
the prior occurrence, to avoid scores decaying artificially due to

prior occurrences of the same snippet.

A.6 Injecting Subtly Persistent Anomalies

Weuse the following procedure to inject subtly persistent anomalies

for § 5.3.3. We inject bike trips into the first three months of Chicago

Bike. For each anomalous bike trip, we select a start and end position

at random within 10 minutes of the start and end of the stream,

so that the trip covers most of the three months. We then select

a number of occurrences |O|x from 5 to 100, weighted inversely

proportional to the chosen number, to favor lower frequencies.

We inject that many anomalies at roughly uniform intervals into

the stream, but perturb the gaps from uniform by ±20 minutes to

simulate realistic variance. The anomalous bike trips are chosen

from among those not currently present in the stream so that they

do not conflict with existing trips. The number of anomalous edges

is the sum of the randomly chosen number of occurrences over all

50 bike trips, and these edges are labeled as 1 while the rest are 0.

We generated 10 injection sets using different random seeds, and

the exact number of resulting edges injected in each set was 3322,

3354, 2714, 2474, 3764, 3366, 3606, 2760, 3360, and 2560.

A.7 Hardware and Software

We perform all experiments on an Intel(R) Xeon(R) CPU E5-2697

v3 @ 2.60GHz with 1TB RAM. Our code is implemented in Python.

A.8 Reference of Parameters Used

Table 5 gives the parameters used in each of the experiments.

Table 5: Reference of parameters used in our code for figures and

tables reported in § 5. For maximum size of kmax = 1, the duration

of a snippet is always 0, in which case the maximum duration can

be set arbitrarily without affecting results.

Tab./Fig. kmax δmax Variant View ϕ α β γ

Fig. 4 (Boston) 1 N/A oPENminer ID 1 0.5 2

Fig. 4 (Columbus) 1 N/A oPENminer ID 2 0.5 3

Fig. 5 1 N/A oPENminer ID 1 1 10

Fig. 6 (left) 3 3600 oPENminer ID 1 0.5 2

Fig. 6 (right) 3 900 oPENminer Order 2 0.5 10

Fig. 7 1 N/A sPENminer ID 1 0.2 10

11

	Abstract
	1 Introduction
	2 Related Work
	3 Theory
	3.1 Preliminary Definitions
	3.2 Properties of Persistence
	3.3 Proposed Persistence Measure
	3.4 Theoretical Analysis

	4 Proposed Method: PENminer
	5 Evaluation
	5.1 Data
	5.2 RQ1: Persistent vs. Frequent
	5.3 RQ2: Anomalies in Real Time
	5.4 RQ3: Efficiency and Scalability

	6 Conclusion
	References
	A Supplement on reproducibility
	A.1 Complexity Analysis
	A.2 Detailed Pseudocode
	A.3 Choosing , ,
	A.4 Choosing Activity Snippets
	A.5 Using Random Cut Forests
	A.6 Injecting Subtly Persistent Anomalies
	A.7 Hardware and Software
	A.8 Reference of Parameters Used

