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Abstract

As children acquire the knowledge of their language’s mor-
phology, they invariably discover the productive processes that
can generalize to new words. Morphological learning is made
challenging by the fact that even fully productive rules have
exceptions, as in the well-known case of English past tense
verbs, which features the -ed rule against the irregular verbs.
The Tolerance Principle is a recent proposal that provides a
precise threshold of exceptions that a productive rule can with-
stand. Its empirical application so far, however, requires the
researcher to fully specify rules defined over a set of words.
We propose a greedy search model that automatically hypoth-
esizes rules and evaluates their productivity over a vocabulary.
When the search for broader productivity fails, the model re-
cursively subdivides the vocabulary and continues the search
for productivity over narrower rules. Trained on psycholog-
ically realistic data from child-directed input, our model dis-
plays developmental patterns observed in child morphology
acquisition, including the notoriously complex case of German
noun pluralization. It also produces responses to nonce words
that, despite receiving only a fraction of the training data, are
more similar to those of human subjects than current neural
network models’ responses are.
Keywords: linguistics; language acquisition; morphology;
computational modeling

Introduction
The acquisition of English past tense is one of the most ex-
tensively studied problems in cognitive science (McClelland
& Patterson, 2002; Pinker & Ullman, 2002). Yet its
simplicity—a single, and numerically dominant, rule (-ed)
along with a list of irregular verb exceptions—is hardly rep-
resentative of the complexity of the world’s morphological
systems (Comrie, 1989). In comparison, German noun plu-
ralization is a more challenging test for morphological learn-
ing theories. The plural is formed by five suffixes, but even
the least frequent, -s, is productive and applies to novel nouns
(e.g., iPhones), while the other four suffixes are also produc-
tive for sub-categories of nouns characterized by their gen-
der and phonological properties (Wiese, 1996). Nevertheless,
children exhibit remarkable proficiency of their native lan-
guage’s morphology at a very early age; see (Lignos & Yang,
2016) for a cross-linguistic review.

Children’s discovery of productive rules is also attested
experimentally when presenting young children with nonce
words in a Wug test (Berko, 1958) and when new words (e.g.,
google-googled) enter a language. As a result, traditional lin-
guistic approaches to language acquisition often make use of
productive rules (Chomsky & Halle, 1968). Rumelhart and

McClelland (1986) proposed an impactful neural-network
(NN) model, suggesting that NNs might be capable of ex-
hibiting rule-like behavior despite having no explicit repre-
sentation of rules. Ensuing critiques of the model by Pinker
and Prince (1988) and of connectionist models of cognition
more generally by Fodor and Pylyshyn (1988) sparked what
came to be known as the “Past Tense Debate.” Due to the
extensive advancements in NN architecture in natural lan-
guage processing and machine learning, the debate has re-
cently been revived by Kirov and Cotterell (2018) with some
initially promising improvements over early models (in par-
ticular, more realistic accuracy). However, these accom-
plishments have been challenged, especially when compared
against human behavioral results on Wug tests in English past
tense (Corkery, Matusevych, & Goldwater, 2019) and Ger-
man plurals (McCurdy, Goldwater, & Lopez, 2020).

The Tolerance Principle (TP) may provide another solu-
tion to some of these challenges (Yang, 2016). It provides
a tipping point for rule productivity based on the level of
rote-memorized exceptions that the rule needs to withstand.
A mathematical consequence of the TP is that rules defined
over smaller vocabularies can tolerate a larger fraction of ex-
ceptions. This property is attractive. First, it makes the TP
a promising candidate for modeling early language develop-
ment, when children’s vocabulary size is quite limited. Sec-
ond, if the learner fails to acquire a broad rule defined over
a vocabulary, the vocabulary can be partitioned into subsets,
within which narrower rules may be identified by recursive
application of the TP. In this work, we propose an abduc-
tive learning model of morphology, which we call Abduction
of Tolerable Productivity (ATP). ATP is a search procedure
that recursively hypothesizes rules and evaluates productivity,
until all words in the vocabulary are either accounted for by
productive rules or listed as exceptions.

Background
Psychological and Developmental Considerations
Computational models of cognition, which inevitably make
simplifying assumptions, must still operate within the bound-
aries established by empirical research. We review several
important lines of results from child language acquisition,
which serve as the design specifications for computational
models of morphological learning.



Data size One of the most remarkable characteristics of
child language acquisition is how small the vocabulary on
which they learn is. All English-learning children acquire
the productive use of past tense by age three (Kuczaj, 1977),
some even before age two (Brown, 1973). Likewise, German-
learners show over-regularization of suffixes such as -(e)n
and -e before or around age two (Mills, 1986; Elsen, 2002).
At such an early stage of development, children have a very
modest vocabulary: a two-year-old English learner’s total vo-
cabulary is 500 at most, and a three-year-old’s vocabulary has
an upper limit of just over 1000; most children’s vocabulary
size is considerably smaller (Fenson et al., 1994; Hart & Ris-
ley, 1995). See (Bornstein et al., 2004; Szagun, Steinbrink,
Franik, & Stumper, 2006) for similar findings in other lan-
guages. Thus, a developmentally plausible cognitive model
should be able to learn the core morphology of inflection from
datasets containing only a few hundred words.

Productivity and Wug Tests The classic study by Berko
(1958) was the first systematic demonstration that young chil-
dren apply productive rules to form noun plurals (wug-wugs)
and past tense verbs (rick-ricked). Berko also found that chil-
dren nearly categorically resist the analogical use of irreg-
ular forms, even for words very similar to existing irregu-
lars. For example, only 1 of the 86 children in the study
produced glang for the novel verb gling. The categorical sta-
tus of productivity is also strongly confirmed in naturalistic
production. One of the first quantitative longitudinal stud-
ies (MacWhinney, 1978) noted that regular forms are rarely
analogized into irregular forms, while irregular forms are of-
ten regularized. More recent quantitative studies estimate
the rate of past tense over-regularization at 8-10% of all past
tense forms (Maratsos, 2000; Maslen, Theakston, Lieven, &
Tomasello, 2004). By contrast, children almost never over-
extend an irregular form (e.g., bite-bote from write-wrote, fry-
frew from fly-flew): the most comprehensive study places the
error rate at 0.2% (Xu & Pinker, 1995).

The Tolerance Principle
The Tolerance Principle (TP) is a cognitively-motivated,
theoretical tipping point that makes quantifiable predictions
about when a linguistic process is used productively. It is
inspired by studies of lexical processing and the hypothesis
that children use a morphological process productively when
it is computationally more efficient to do so. The TP only
depends on two quantities: N—the number of words in the
rule’s scope—and e, the number of exceptions. For instance,
the -s process for English pluralization applies to singular
nouns and has exceptions like children, sheep, fish, etc. In
our model, rules are of the form r : A=⇒C where A is the an-
tecedent and C the consequent; N measures how many times
A applies and e measures the number of times C fails to fol-
low from A. Given a rule r with a scope of size N and e
exceptions, the TP states that

r is productive iff e≤ θN ,
N

lnN
. (1)

The TP has consistently made accurate predictions on when
children accept rules as productive and when they do not,
as confirmed in artificial language learning experiments
(Schuler, Yang, & Newport, 2016; Koulaguina & Shi, 2019)
with precisely controlled conditions. Productivity under the
TP is categorical, which mirrors children’s morphological
use reviewed above. It is also parameter-free: the two val-
ues N and e are word counts directly from the training data
that require neither parameter tuning nor statistical fitting.

Critically for complex morphological systems, the TP can
be applied recursively: if a rule r is unproductive over its
current scope, its scope can be recursively narrowed. For
example, none of the five German noun plural suffixes cov-
ers a sufficiently large number of nouns to tolerate the rest
as exceptions: the learner will attempt to organize nouns
into subcategories—defined by morphological gender and the
phonological form of the noun—to recursively search for pro-
ductivity within. As we will see, this divide-and-conquer
strategy is fully automated in our search procedure.

Model
Abductive Search for Productivity

The recursive application of the TP lends itself to a Peircean
abductive learning procedure. Given data in pairs, such a pro-
cedure hypothesizes rules that map one set to the other (e.g.,
lemmas to their inflected forms). If no such rule is productive
via the TP, then it subdivides the words according to some
feature—that is, it refines the hypothesis over more narrow
scopes—and recursively tries again.

We propose just such a procedure: Abduction of Toler-
able Productivity (ATP). Its input is a set X of instances
in the form (`,F , I), where ` is a lemma, F ⊆ Ω is a set
of features from the feature space Ω, and I is the inflected
form corresponding to lemma ` and features F ; for instance
(walk, {3,SG,PST}, walked), where the example features
3,SG,PST carry the information that the inflection is 3rd per-
son, singular, and past tense.

ATP recursively grows a decision tree, where each in-
stance’s “label” is the morphological change that produces
the inflection; the resulting tree thus encodes a map from
lemma and features to inflection. In principle ATP could
model any type of inflectional morphology, but the inflections
modeled in this paper involve only suffixation, in which case
an instance’s “label” is the suffix that is concatenated to the
lemma. For clarity, we describe ATP in terms of suffixation.

At each recursive level, the decision of which feature to
split on is selected to maximize consistency: the relative fre-
quency of the most frequent suffix that the instances with that
feature take. That is, it splits on ŝ = argmaxs∈Ω =

fσmax(Xs)
|Xs| ,

where Xs = {(`,F , I)∈ X : s∈F } is the set of instances with
feature s and fσmax(Xs) is the frequency of the most frequent
suffix in Xs. The split is formed by recursing separately on
those instances with feature s (i.e., Xs) and those without it
(i.e., X \Xs).



If productivity is defined as the frequency of the most fre-
quent suffix in Xs, then this is one possible formulation of
Yang (2016)’s proposed Principle of Maximize Productivity,
which he described as “Pursue rules that maximize produc-
tivity.” Furthermore, it is motivated by findings that consis-
tent patterns promote generalization and category formation
in learning (Gerken, 2006; Reeder, Newport, & Aslin, 2013).

Features The set of features provided as input is expanded
to include regularities in the ending of lemmas. For instance,
the null suffix for German nouns is predominantly used for
non-feminine lemmas ending with a schwa followed by l, r,
or n (Wiese, 1996). Regularities of this sort are extracted at
each recursive level as the shortest lemma endings that pro-
ductively predict a suffix in X (the training instances at that
level).

To do so, ATP considers suffixes one-by-one and, for each
suffix, it considers the endings of lemmas that take that suf-
fix, starting with the shortest ending. It caches any ending
where the number of lemmas that do have the ending but do
not take the suffix is tolerably low; effectively, ending =⇒
suffix passes the TP. For example, enough English verb lem-
mas ending in [k] take the [-t] suffix to pass the TP; similarly
for [p], [S], and other voiceless segments. We denote the lem-
mas that take any such endings as E (e.g., E = {lemma :
lemma ends in [k] or [p] or ... or [S]} in the English verb ex-
ample). If S consists of the lemmas whose inflections take
the suffix being considered, then ATP tests the TP for both
N1 = |E |,e1 = |E \S | and N2 = |S |,e2 = |S \E |. If both tests
pass the TP, the endings contributing to E are added to the
feature space Ω. The purpose of these tests is to establish
that there is a productive relationship between the endings
and the suffix. In the running example, all words that end in
a voiceless segment other than [t] take the [-t] suffix, and all
words that take the [-t] suffix end in a voiceless segment, so
both tests pass. Further examples of the result can be seen
in Figs. 3-4, where sets of lemma endings appear in brackets,
separated by “|” for logical or. This has the interpretation of
picking out the lemmas that end in any such ending (i.e., E).

Thus, at the end of the lemma ending extraction, the fea-
ture space Ω consists of whatever features were provided as
input, together with the newly added sets of endings. ATP is
agnostic to the nature of a feature, such as whether it has to do
with content or form. It considers them all equally, seeking
to maximize consistency, as described above.

Moreover, alternative approaches to incorporating or dis-
covering features could be used without changing the funda-
mental recursive, abductive search procedure. Such adaptions
could be useful in morphological processes beyond suffixa-
tion, where ATP could make use of features relevant to pro-
cesses such as infixation and stem change within the same
abductive search procedure.

Recursive and Base Cases Once a split is performed, the
node’s children are formed recursively on the partitioned set.

Features that are equivalent across all instances in X are ig-
nored since they are completely uninformative. The base case
of this recursion is reached when the most frequent suffix at
the node passes the TP or when there are no more features
to split on. The path to a node with a productive suffix is the
rule (e.g., Figs. 3-4), and all exceptions to the rule are memo-
rized by storing them at the corresponding node. If a node is
reached where no suffix is productive and there are no more
features to split on, the node’s instances are memorized.

Inflection Production
Once trained, ATP can use its acquired knowledge to pro-
duce the inflected form corresponding to a lemma and its fea-
tures. It does so by traversing the decision tree to a leaf. If
the leaf has a productive suffix, ATP produces the inflected
form via the rule. If there is no productive suffix at the
leaf, ATP makes an analogical guess by retrieving the mem-
orized lemma at that node with the smallest character-level
Hamming distance, padding 0’s if necessary to make the two
strings the same length. ATP uses the learned inflected form
for the nearest-neighbor lemma to produce the inflection for
the target lemma. In some cases—such as when nonce words
are presented—some features may be unknown. In this case,
an inflection is produced by traversing all logically compati-
ble paths and using the most specific (i.e., deepest in the tree)
compatible rule. A path is logically compatible if none of
the features it specifies are contradicted by the word’s known
features. For instance, if the gender of a nonce word is un-
known, and ATP encounters a branch point in the tree that is
determined by gender, it takes both branches.

It is worth pointing out that analogical guessing forces an
answer in order to quantitatively evaluate our model on test
data. However, in many cases of language use, speakers may
refuse to produce any form when they do not have an appli-
cable productive rule, as in the well-known case of morpho-
logical gaps (Yang, 2016).

Code We make the code for ATP, along with instructions
for using it on new data, available online.1

Evaluation
We evaluate the developmental plausibility of ATP with re-
spect to the order in which rules are acquired and its quanti-
tative performance on realistic data. We further evaluate how
the regularities ATP discovers and its productions on Wug
tests correspond to children’s discoveries and productions.

Data and Setup
We briefly discuss the data that we use in our experiments,
and name each dataset for reference.

CHILDES-DE contains 442 German nominative sin-
gular/plural pairs of child-directed speech from the Leo
(Behrens, 2006) CHILDES corpus. Features encode gen-
der, one of Ω = {feminine, masculine, neuter}, and

1https://github.com/cbelth/ATP-morphology.

https://github.com/cbelth/ATP-morphology


frequency of words is known. We removed umlauts, as these
follow a separate morphological process from suffixation. For
developmental experiments, we sampled subsets of size 400,
weighted by frequency, each sample modeling a child’s 400
word vocabulary. The findings (reviewed earlier) that age-two
children have productive plural morphology suggests that suf-
fixes are learnable on vocabularies of this size or even smaller.
While the CHILDES-derived words are used for training, we
test on CELEX words. Morphological knowledge is gener-
ally acquired during childhood but must be able to generalize
to other words in the lexicon.

CHILDES-EN was constructed from 6,539 word-
inflection pairs extracted from child-directed English
(MacWhinney, 2000). There are 3,321 plural nouns (23 ir-
regular), 1,494 past tense verbs (120 irregular), and 1,724
progressive verbs (the exceptionless -ing). As reviewed ear-
lier, children’s vocabulary size during morphological learning
is very modest. We thus log-binned words into 20 bins based
on frequency and sampled 50 from each, simulating a child’s
vocabulary growth from 50 to 1K words. We repeated 100
times with different random seeds to simulate 100 children.
Features are one of Ω = {progressive, past, plural}.

CELEX-EN contains just the stem/past tense pairs from
CHILDES-EN, intersected with CELEX (Baayen, Piepen-
brock, & Gulikers, 1996) for word frequency. For cross-
validation, we formed 10 random 1000/100/200 train/dev/test
splits, and for developmental experiments, we test on the
top n items, n ∈ {100,200,400,600,800,1000}. To simulate
children, we added random jitters between 0 and 5 to the fre-
quencies. This has the Zipfian effect of scrambling which
low-frequency items appear in each learner’s training data.

Setup Throughout the experiments, we use orthography
for German and IPA transcriptions for English, following
McCurdy et al. (2020)’s use of orthography and Kirov and
Cotterell (2018)’s use of phonological transcriptions. Token
frequencies are used to construct realistic datasets, but only
type frequencies are used in learning and evaluation. We use
paired t-tests at a 0.95 confidence level for statistical analy-
sis. When testing Kirov and Cotterell (2018)’s ED model, we
follow their setup, using an identical RNN implementation,
trained for 100 epochs, with batch size 20. Both encoder and
decoder RNNs are bidirectional LSTMs (Schuster & Paliwal,
1997) with two layers, 100 hidden units, and a vector size of
300.

Developmental Results

Order of Acquisition We study the order in which ATP
discovers productive processes in English and German to as-
sess its consistency with children’s developmental patterns
on both English pluralization, verb past tense, and verb
present participle (CHILDES-EN) and German pluralization
(CHILDES-DE).

Figure 1 shows that ATP acquires the -s for pluralization
(e.g., book, books) and -ing for the verb present participle

Figure 1: Fraction of “children” (ATP runs on different data)
who have learned each major suffixation rule. The order of
acquisition closely follows child development. Legend order
and shade of gray match acquisition order. All suffixes are
consistently acquired, except German -s (≈ 20%).

Figure 2: Accuracy on English and German vs. ED. ATP
outperforms ED by a stat. sig. amount on English and the first
four training sizes for German. English accuracy on irregulars
in the training data (dotted line) demonstrates the classic U-
shape. The dashed line on German is the performance when
the models are presented lemmas without gender.

(e.g., walk, walking) on the smallest dataset (50 pairs). In
contrast, the exception-laden -ed of the past tense takes longer
to overcome the irregulars, but is consistently acquired by
around 500 words. These patterns align well with the order of
morpheme acquisition by English-learning children (Brown,
1973).

On German pluralization, which has five primary suffixes
(-(e)n, -e, - /0, -er, -s; we separate -n and -en), ATP acquires -
n immediately (on 50 words), which closely follows “A" in
Elsen (2002)’s diary study, who learned -e(n) words most
quickly. By 100 words, - /0 and -e have been acquired; again
matching “A," where the rate of learning of - /0 and -e words
is virtually identical. Other longitudinal studies have also
shown the very early acquisition of these suffixes (Gawlitzek-
Maiwald, 1994). The -er suffix is learned by 95% of simu-
lated children by 400 words. In Elsen (2002), -s and -er words
were learned at similar rates, while other studies (Köpcke,
1998; Bittner, 2000; Szagun, 2001) also find that -s, while
productive, generally emerges later. In our data, -er is at-
tested 15 times, while -s only 8 times; Elsen (2002) reports
that A’s s-over-regularizations jump at 2;1, when her vocab-
ulary contains around 50 -s words, which may explain the
difference.



Performance We evaluate quantitative performance on
CELEX-EN and CHILDES-DE in terms of how accu-
rately the model generates inflections for held-out (lemma,
features) pairs as the training data is progressively grown,
simulating vocabulary growth. We compare to Kirov and Cot-
terell (2018)’s ED model. Results are in Fig. 2.

On English past tense, ATP outperforms ED by a statisti-
cally significant amount on all training sizes. Furthermore,
when evaluated on irregulars that it has seen during training,
ATP over-applies learned rules before correcting, exhibit-
ing the developmental regression (Kuczaj, 1977; G. Marcus,
Pinker, Ullman, Hollander, & Xu, 1992) that is a hallmark
of the English past tense acquisition (dotted line). Before
the model learns the productivity of -ed, all training verbs
are memorized (irregulars and regulars alike). Once the pro-
ductive rule is learned, the model erases the memory of rule-
following verbs, which no longer require storage. The two
drops in irregular training accuracy correspond with the two
largest jumps in test accuracy, demonstrating the acquisition
of a rule (likely /-t/ and /-d/; see Fig. 3). Throughout learn-
ing, all test errors were over-regularizations of rules (unless
guessing occurred due to no rule having yet been acquired),
matching the regularization vs. irregularization contrast in
child acquisition (Berko, 1958; MacWhinney, 1978; Xu &
Pinker, 1995).

On German pluralization, ATP outperforms ED by a sta-
tistically significant amount on the first four datasets (60-240
words) and is statistically indistinguishable after that point.
Though the training data contains gender, the models can also
be tested with novel nouns without gender information. Plu-
ral suffixation is not only conditioned on gender but also the
phonological properties of nouns (Wiese, 1996; Zaretsky &
Lange, 2015). ATP always outperforms ED without gender,
indicating that it is more capable of extracting the phonolog-
ical regularities in the German system.

In addition to its accuracy, ATP runs in seconds on all
dataset sizes, compared to minutes for ED.

We note that the setup of this evaluation differs in certain
respects from that used in the neural modeling literature. In
particular, each number in Fig. 2 is the average test accuracy
of fully-trained models on each of the training sets of that size
(with the exception of the dotted U-shape line, as discussed
above). In contrast, learning curves in works like Kirov and
Cotterell (2018) report training accuracy of partially-trained
models by epoch. Moreover, in such works, the model’s final
test-accuracy is an average only over different random initial-
izations of the model, holding the training data constant. We
chose our setup because our focus is on modeling develop-
ment, and evaluating periodically on held-out test data is a
more faithful measure of a model’s developmental trajectory.

Acquired Knowledge

Discovered Rules ATP learns rules explicitly, represented
in a decision tree. The output trees in Figs. 3-4 have transpar-
ent linguistic interpretations.

Figure 3: ATP decision tree for CHILDES-EN past tense.
IPA symbols in brackets are separated by “|” to indicate that a
lemma that ends in any of the listed endings follows (or does
not follow, if preceded by “¬”) the branch.

Table 1: Correlations with human production results (bold =
stat. sig.). Training ATP on just 400 words of child-directed
speech yields higher correlation with human productions than
training a NN on 22x times the data (McCurdy et al., 2020).

Neuter Unknown
%R %NR ρ %R %NR ρ

-(e)n 0.17 0.04 -0.26 0.19 0.23 0.43
-e 0.27 0.35 -0.14 0.45 0.62 0.01
- /0 0.11 0.0 0.55 0.07 0.00 0.55
-er 0.44 0.17 0.53 0.29 0.0 0.46
-s 0.01 0.44 0.3 0.01 0.15 0.64

other 0.00 0.00 0.00 0.00

The English tree (Fig. 3) correctly characterizes the -ed
rule for English past tense: the first branch to the [-t] node
splits on voiceless stem endings, the next branch to [-d] splits
on voiced stem endings, and [-Id] captures the remaining in-
stances.

The German tree (Fig. 4) captures all five primary suffixes
(-(e)n, -e, - /0, -er, -s). The -s suffix—well-known to be the
most idiosyncratic—is picked up at the deepest point in the
tree, conforming to its role as the rule of last resort (G. F. Mar-
cus, Brinkmann, Clahsen, Wiese, & Pinker, 1995).

This particular English tree was learned from 1000 words
(one simulated child) of CELEX-EN, and the German tree
was learned from the 442 German nouns in CHILDES-DE.

Wug Test Production The Wug test can be used to assess
the morphological knowledge acquired by both humans and
computational models. G. F. Marcus et al. (1995) carried out
a Wug test study with 24 nonce words, divided into Rhyme
(rhymes with familiar German words) and Non-Rhyme (unfa-
miliar) nonce words. The same stimuli were used by Zaretsky
and Lange (2015) and McCurdy et al. (2020). McCurdy
et al. (2020) compared the predictions of Kirov and Cot-
terell (2018)’s ED neural network model to human produc-
tions. We passed the same 24 nonce words to ATP trained
on CHILDES-DE. This experiment follows McCurdy et al.
(2020): it computes (a) the fraction of productions for each



Figure 4: ATP decision tree for CHILDES-DE. “M” indi-
cates nouns with masculine gender.

suffix, divided into Rhyme (R) and Non-Rhyme (NR) and (b)
Spearman’s rank correlation (ρ) between the production prob-
abilities of human and ATP productions. To simulate multi-
ple people, we ran ATP on 500 samples of size 400 (by fre-
quency) from CHILDES-DE. As in McCurdy et al. (2020),
we treated each run as a model of a human, and computed the
production probabilities for a particular word-suffix pair as
the fraction of models that produced that suffix for that word.

When presenting ATP nonce words with unknown gender
(right columns of Tab. 1), ATP correlates with human produc-
tions statistically significantly for all suffixes except -e. This
is in contrast to the ED model, which shows no correlation
for any suffix (McCurdy et al., 2020). Moreover, ATP was
trained on a realistic 400 words of child-directed speech—
over which the core inflectional morphology is learned—
while ED was trained on 8.7K words, or 22x the data. Fur-
thermore, both Zaretsky and Lange (2015) and McCurdy et
al. (2020) found that -(e)n and -s are used more frequently for
non-rhyme words than rhyme words. ATP again matches this
behavior, and ED did not (McCurdy et al., 2020).

When presenting nonce words with unknown gender to
ATP, the correlation with human performance is higher than
when presenting with neuter gender (left columns). The
participants in McCurdy et al. (2020) were presented nonce
words with the neuter determiner das. However, the impact
of this is unknown. As noted earlier (Wiese, 1996), the suffix
choice is conditioned on both gender and phonology, and a
conflict generally arises only in non-feminine gender (nearly
all feminine nouns add -(e)n). When they conflict, as in
the test stimuli, human subjects may persist with a gender-
conditioned rule, or they may eschew gender altogether and
rely on phonological similarity to existing words (Zaretsky &
Lange, 2015). Our model makes a testable prediction regard-
ing this open question that can be pursued in future research.

Discussion
ATP is not limited to morphology acquisition. Further re-
search could investigate its use in learning phonology, syn-
tax, or anything where linguistic generalizations are learned.
Children’s adeptness at language acquisition is a constant re-
minder of how much knowledge can be learned from tiny
amounts of evidence. The decision trees that ATP learns
leave a step-by-step trace of what was learned and how. They
thus provide explicit places to look for the steps children take
in acquiring language.
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