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Abstract
The traditional setup of link prediction in networks assumes that a test set of node pairs,
which is usually balanced, is available over which to predict the presence of links. However,
in practice, there is no test set: the ground truth is not known, so the number of possible
pairs to predict over is quadratic in the number of nodes in the graph. Moreover, because
graphs are sparse,most of these possible pairswill not be links. Thus, link predictionmethods,
which often rely on proximity-preserving embeddings or heuristic notions of node similarity,
face a vast search space, with many pairs that are in close proximity, but that should not be
linked. Tomitigate this issue, we introduce LinkWaldo, a framework for choosing from this
quadratic, massively skewed search space of node pairs, a concise set of candidate pairs that,
in addition to being in close proximity, also structurally resemble the observed edges. This
allows it to ignore some high-proximity but low-resemblance pairs, and also identify high-
resemblance, lower-proximity pairs. Our framework is built on a model that theoretically
combines stochastic block models (SBMs) with node proximity models. The block structure
of the SBM maps out where in the search space new links are expected to fall, and the
proximity identifies the most plausible links within these blocks, using locality sensitive
hashing to avoid expensive exhaustive search. LinkWaldo can use any node representation
learning or heuristic definition of proximity and can generate candidate pairs for any link
prediction method, allowing the representation power of current and future methods to be
realized for link prediction in practice. We evaluate LinkWaldo on 13 networks across
multiple domains and show that on average it returns candidate sets containing 7–33% more
missing and future links than both embedding-based and heuristic baselines’ sets. Our code
is available at https://github.com/GemsLab/LinkWaldo.
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1 Introduction

Link prediction is a long-studied problem that attempts to predict either missing links in
an incomplete graph or links that are likely to form in the future. This has applications in
discovering unknown protein interactions to speed up the discovery of new drugs, friend
recommendation in social networks, knowledge graph completion, and more [1,20,21,32].
Techniques range from heuristics, such as predicting links based on the number of common
neighbors between a pair of nodes, to machine learning techniques, which formulate the link
prediction problem as a binary classification problem over node pairs [11,40].

Link prediction is often evaluated via a ranking, where pairs of nodes that are not currently
linked are sorted based on the “likelihood” score given by the method being evaluated [21].
To construct the ranking, a “ground truth” test set of node pairs is constructed by either (1)
removing a certain percentage of links from a graph at random or (2) removing the newest
links that formed in the graph, if edges have timestamps. These removed edges form the test
positives, and the same number of unlinked pairs is generated at random as test negatives.
The methods are then evaluated on how well they are able to rank the test positives higher
than the test negatives.

However, when link prediction is applied in practice, these ground truth labels are not
known, since that is the very question that link prediction is attempting to answer. Instead,
any pair of nodes that are not currently linked could link in the future. Thus, to identify likely
missing or future links, a link prediction method would need to consider O(n2) node pairs
for a graph with n nodes; most of which in sparse, real-world networks would turn out to
not link. Proximity, on its own, is only a weak signal, sufficient to rank pairs in a balanced
test set, but likely to turn up many false positives in an asymptotically skewed space, leaving
discovering the relatively small number of missing or future links a challenging problem in
practice, when no ground truth is known.

Proximity-based link prediction heuristics [20], such as CommonNeighbors, could ignore
some of the search space, such as nodes that are farther than two hops from each other, but
this would not extend to other notions of proximity, like proximity-preserving embeddings.
Duan et al. studied the problem of pruning the search space [8], but formulated it as top-k
link prediction, which attempts to predict a small number of links, but misses a large number
of missing links in the process, suffering from low recall.

The goal of this work is to develop a principled approach to choose, from the quadratic
and skewed space of possible links, a set of candidate pairs for a link prediction method to
make decisions about. We envision that this will allow current and future developments to
be realized for link prediction in practice, where no ground truth set is available.

Problem 1 Given a graph and a proximity function between nodes, we seek to return a
candidate set of node pairs for a link predictor to make decisions about, such that the set is
significantly smaller than the quadratic search space, but contains many of the missing and
future links.

Our insight to handle the vast number of negatives is to consider not just the proximity of
nodes, but also their structural resemblance to observed links. We measure resemblance as
the fraction of observed links that fall in inferred, graph-structural equivalence classes of node
pairs. For example, Fig. 1 shows one possible grouping of nodes based on their degrees, where
the resulting structural equivalence classes (the cells in the “roadmap”) capture what fraction
of observed links formbetweennodes of different degrees.Basedon the roadmap, equivalence
classes with a high fraction of observed edges are expected to contain more unlinked pairs
than those with lower resemblance. We then employ node proximity within equivalence
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A hidden challenge of link prediction… 745

Fig. 1 Our proposed framework LinkWaldo chooses candidate pairs from the quadratic, highly skewed
search space of possible links by first constructing a roadmap, which partitions the search space into structural
equivalence classes of node pairs to capture how much pairs in each location resemble the observed links.
This roadmap tells LinkWaldo how closely to look in each section of the search space. LinkWaldo follows
the roadmap, selecting from each equivalence class the node pairs in closest proximity

classes, rather than globally, which decreases false positives that are in close proximity, but
do not resemble observed links, and decreases false negatives that are farther away in the
graph, but resemble many observed edges. Moreover, to avoid computing proximities for all
pairs of nodes within each equivalence class, we extend self-tuning locality sensitive hashing
(LSH). Our main contributions are:

– Formulation & theoretical connectionsGoing beyond the heuristic of proximity between
nodes, we model the plausibility of a node pair being linked as both their proximity and
their structural resemblance to observed links. Based on this insight, we propose Future
Link Location Models (FLLM), which combine proximity models and stochastic block
models, and we prove that proximity models are a naive special case Sect. 3.

– Scalable methodWedevelop a scalablemethod,LinkWaldo (Fig. 1), which implements
FLLM, and uses locality sensitive hashing to implicitly ignore unimportant pairs Sect. 4.

– Empirical analysis We evaluate LinkWaldo on 13 diverse datasets from different
domains, where it returns on average 22–33% more missing links than embedding-
based models and 7–30% more than strong heuristics. We also investigate the effects
of LinkWaldo’s parameters Sect. 5.

Our code is at https://github.com/GemsLab/LinkWaldo.

2 Related work

In this paper, we focus on the understudied problem of choosing candidate pairs from the
quadratic space of possible links, for link prediction methods to make predictions about. We
first discuss link prediction techniques and methods that focus specifically on the problem
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746 C. Belth et al.

of selecting candidate pairs, and then briefly present work on node embeddings, since our
proposed framework is flexible and can leverage latent representations to solve the problem
at hand.

Link prediction Link prediction techniques range from heuristic definitions of similarity,
such as Common Neighbors [20], Jaccard Similarity [20], and Adamic-Adar [1], to machine
learning approaches, such as latent methods, which learn low-dimensional node representa-
tions that preserve graph-structural proximity in latent space [11], and GNNmethods, which
learn heuristics specific to each graph [40] or attempt to re-construct the observed adjacency
matrix [15]. For detailed discussion of link prediction techniques, we refer readers to [20]
and [21].

Selecting candidate pairs The closest problem to ours is top-k link prediction [8], which
attempts to take a particular link prediction method and prune its search space to directly
return the k highest score pairs. Onemethod [8] samplesmultiple subgraphs to form a bagging
ensemble, and performs NMF on each subgraph, returning the nodes with the largest latent
factor products from each, while leveraging early stopping. The authors view their method’s
output as predictions rather than candidates, and thus focus on high precision at small values of
k relative to our setting. Another approach, Approximate Resistance Distance Link Predictor
[26] generates spectral node embeddings by constructing a low-rank approximation of the
graph’s effective resistancematrix, and applies a k-closest pairs algorithm on the embeddings,
predicting these as links. However, this approach does not scale to moderate embedding
dimensions (e.g., the dimensionality of 128 often-used used in embedding methods), and is
often outperformed by the simple common neighbors heuristic.

A related problem is link recommendation, which seeks to identify the k most relevant
nodes to a query node. It has been studied in social networks for friend recommendation [33],
and in knowledge graphs [14] to pick subgraphs that are likely to contain links to a given
query entity. In contrast, we focus on candidate pairs globally, not specific to a query node.

Node embeddingsNode embeddings are low-dimensional latent representations of the nodes
that preserve certain node properties. There are two main types of node embeddings [31,41]:
proximity-preserving embeddings (e.g., [10,27,28,36]) capture a node’s community structure
(nodes that are close to each other are embedded similarly), whereas structural embeddings
(e.g., [7,12,13,29]) capture roles and structural similarities between the nodes. Recent works
have explored the connections and distinctions between proximity-preserving and structural
embeddings [31,41].

Among the various embeddings that have been proposed in the recent years, we discuss
a few methods that we leverage in our empirical evaluation. NetMF [28] is a proximity-
preserving embedding that unifies skip-gram-based network embedding approaches (such
as DeepWalk [27], LINE [36], PTE [35] and node2vec [10]) into closed-form matrix fac-
torization. The difference between the embedding methods is determined by what matrix
is factorized. Another approach, xNetMF [12], is also a matrix factorization-based node
embedding approach, but it captures structural similarity rather than proximity-based simi-
larity. Lastly, BINE [9] is specifically designed for embedding bipartite networks. It applies
bias to its random walks according to nodes’ centrality to preserve the long-tail distribution
of the network, and its optimization function captures both first- and higher-order proximities
among the nodes.

Usually structure-preserving embeddings are not used in link prediction, because struc-
turally similar nodes are not necessarily likely to link (e.g., hub nodes are more likely to
connect to spokes than to other hubs). However, our proposed framework is able to lever-
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A hidden challenge of link prediction… 747

age information from both proximity-preserving and structural node embeddings: it can
use representations (structural or proximity) in defining structural resemblance and then
proximity-preserving embeddings in choosing pairs within structural equivalence classes.
The details for these are discussed in Sect. 4.

3 Theory

Let G = (V, E) be a graph or network with |V| = n nodes and |E| = m edges, where
E ⊆ V×V . The adjacencymatrixAofG is ann×n binarymatrixwith elementai j = 1 if nodes
i and j are linked, and 0 otherwise. The set of node v’s neighbors isN (v) = {u : (u, v) ∈ E}.
We summarize the key symbols used in this paper and their descriptions in Table 1.

We now formalize the problem that we seek to solve:

Problem 2 Given a graph G = (V, E), a proximity function sim : V × V → R
+ between

nodes, and a budget k << n2, return a set of plausible candidate node pairs P ⊂ V × V of
size |P| = k for a link predictor to make decisions about.

We describe next how to define resemblance in a principled way inspired by stochastic
block models, introduce a unified model for link prediction methods that use the proximity
of nodes to rank pairs, and describe our model, which combines resemblance and proximity
to solve Problem 2.

3.1 Stochastic blockmodels

Stochastic block models (SBMs) are generative models of networks. They model the con-
nectivity of graphs as emerging from the community or group membership of nodes [25].

Node Grouping. A node grouping � is a set of groups or subsets Vi of the nodes that satisfies⋃
Vi∈� Vi = V . It is called a partition if it also satisfies Vi ∩ V j = ∅ ∀ Vi 	= V j ∈ �. Each

node v ∈ V has a |�|-dimensional binary membership vector µv , with element μvi = 1 if v

belongs to group Vi .

Table 1 Description of major
symbols used throughout the
paper

Notation Description

G = (V,E) Graph, nodes, edges

|V| = n, |E | = m Number of nodes resp. edges in G
Enew Unobserved future or missing links

�, � Grouping of V , Partition of V × V
A Adjacency matrix

X ∈ R
n×d Node embedding matrix

xv ∈ R
d Embedding vector of node v

µv Membership vector of node v

Ci Equivalence class i

P , P̃G Pairs selected by LinkWaldo, global pool

k, κ Budget for |P|, target for an equivalence class
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748 C. Belth et al.

A node grouping can capture community structure, but it can also capture other graph-
structural properties, like the degrees of nodes, in which case the SBM captures the
compatibility of nodes with respect to degree—namely, degree assortativity [24].

Membership Indices. Themembership indices Iu,v of nodes u, v are the set of group ids (i, j)
such that u ∈ Vi and v ∈ V j : Iu,v � {i : μu,i = 1} × { j : μv, j = 1}, i, j ∈ {1, 2, . . . , |�|}.
Membership equivalence relation & classes. The membership indices form the equivalence
relation ∼I where (u, v) ∼I (u′, v′) ⇐⇒ Iu,v = Iu′,v′ . This induces a partition � = {C1,
C2, . . . , C|�|} over all pairs of nodes V×V (both linked and unlinked), where the equivalence
class Ci contains all node pairs (u, v) with the same membership indices, i.e., µu = µ

and µv = µ′ for some µ,µ′ ∈ {0, 1}|�|. We denote the equivalence class of pair (u, v) as
[(u, v)]∼I .

Example 1 If nodes are grouped by their degrees to form �, then the membership indices Iu,v

of node pair (u, v) are determined by u and v’s respective degrees. For example, in Fig. 1, the
upper circled node pair has degrees 3 and 5, respectively, which determines their equivalence
class—in this case, the cell (3, 5) in the roadmap. Each cell of the roadmap corresponds to
an equivalence class Ci ∈ �.

We can now formally define an SBM:

Definition 1 (Stochastic block model—SBM) Given a node grouping� and a |�|×|�|weight
matrixW specifying the propensity for links to form across groups, the probability that two

nodes link given their group memberships is Pr(auv = 1|µu,µv) = σ(µT
u Wµv) , where

function σ(·) converts the dot product to a probability (e.g., sigmoid) [23].

The vanilla SBM [25] assigns each node to one group (i.e., the grouping is a partition and
membership vectors µ are one-hot), in which case µT

u Wµv = wIu,v . The overlapping SBM
[17,23] is a generalization that allows nodes to belong to multiple groups, in which case
membership vectors may have multiple elements set to 1, and µT

u Wµv = ∑
i, j∈Iu,v

wi j .
Resemblance. Given an SBM with grouping �, we define the resemblance of node pair
(u, v) ∈ V × V under the SBM as the percentage of the observed (training) edges that have
the same group membership as (u, v):

ρ(u, v) � |{(v1, v2) ∈ E : (v1, v2) ∼I (u, v)}|
m

. (1)

Example 2 In Fig. 1, the resemblance ρ(u, v) of node pair (u, v) corresponds to the density
of the cell that it maps to. The high density in the border cells indicates that many low-degree
nodes connect to high-degree nodes. The dense central cells indicate that mid-degree nodes
connect to each other.

3.2 Proximity models

Proximity-based link prediction models (PM) model the connectivity of graphs based on the
proximity of nodes. Some methods define the proximity of nodes with a sensible heuristic,
such as Common Neighbors (CN), Jaccard Similarity (JS), and Adamic/Adar (AA). More
recent approaches learn latent similarities between nodes, capturing the proximity in latent
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embeddings such that nodes that are in close proximity in the graph have similar latent
embeddings, often using dot product as the measure of latent similarity [11].

Node Embedding. A node embedding, xv ∈ R
d , is a real-valued, d-dimensional vector

representation of a node v ∈ V . We denote all the node embeddings as a matrix X ∈ R
n×d .

Definition 2 (Proximitymodel—PM)Given a similarity or proximity function sim : V×V →
R

+ between nodes, the probability that nodes u and v link is an increasing function of their
proximity: Pr(auv = 1|sim(·, ·)) = f (sim(u, v)) .

Instances of the PM include the latent proximity model:

simLaPM(u, v) � xTu xv, (2)

where xu, xv are the nodes’ latent embeddings; and the Common Neighbors, Jaccard Simi-
larity, and Adamic/Adar models:

simCN(u, v) � |N (u) ∩ N (v)|, (3)

simJS(u, v) � |N (u) ∩ N (v)|
|N (u) ∪ N (v)| , and (4)

simAA(u, v) �
∑

v′∈N (u)∩N (v)

1

log |N (v′)| . (5)

3.3 Proposed: future link locationmodel

Unlike SBM and PM, our model, which we call the Future Link Location Model (FLLM), is
not just modeling the probability of links, but rather where in the search space future links
are likely to fall. To do so, FLLM uses a partition of the search space, and corresponding
SBM, as a roadmap that gives the number of new edges expected to fall in each equivalence
class. To formalize this idea, we first define two distributions:
New and Observed Distributions. The new link distribution pn(Ci ) � Pr(Ci |Enew) and the
observed link distribution po(Ci ) � Pr(Ci |E) capture the fraction of new and observed edges
that fall in equivalence class Ci , respectively. The new link distribution is unobserved.

Definition 3 (Future link locationmodel—FLLM) Given an overlapping SBMwith grouping
�, the expected number of new links in equivalence class Ci is proportional to the number
of observed links in Ci , and the probability of node pair (u, v) linking is equal to the pair’s
resemblance times their proximity relative to other nodes in [(u, v)]∼I :

Pr(auv = 1|µu,µv, sim(·, ·)) = ρ(u, v) · sim(u,v)∑
(u′,v′)∈[(u,v)]∼I

sim(u′,v′) .

FLLM depends on the following theorem, which states that if q% of the observed links
fall in equivalence class Ci , then in expectation, q% of the unobserved links will fall in
equivalence class Ci . We initially assume that the unobserved future links follow the same
distribution as the observed links—as generally assumed in machine learning—that is, the
relative fraction of links in each equivalence class will be the same for future links as observed
links: pn = po. In the next subsection, we show that for a fixed k, the error in this assumption
is determined by the total variation distance between pn and po, and hence is upper bounded
by a constant.

123



750 C. Belth et al.

Theorem 1 Given an overlapping SBM with grouping � inducing the partition � of V × V
for a graph G = (V, E), out of k new (unobserved) links Enew, the expected number that will
fall in equivalence class Ci and its variance are:

E[|Ci ∩ Enew|] = k|Ci ∩ E|
m

(6)

Var(|Ci ∩ Enew|) = k|Ci ∩ E||E \ Ci |
m2 . (7)

Proof Each of the k new edges either falls in equivalence class Ci or it does not, and the
probability of the former outcome is defined above as Pr(Ci |Enew). Thus, the number of
the k new edges that fall in equivalence class Ci—i.e., |Ci ∩ Enew|—is a binomial random
variable over k trials, with success probability Pr(Ci |Enew). This binomial random variable
has expected value

E[|Ci ∩ Enew|] = kPr(Ci |Enew), (8)

and variance

Var(|Ci ∩ Enew|) = kPr(Ci |Enew)(1 − Pr(Ci |Enew)). (9)

We can derive Pr(Ci |Enew) via Pr(Ci |E) and Bayes’ rule:

Pr(Ci |E) = Pr(E|Ci )Pr(Ci )
Pr(E)

(Bayes’ rule)

=
|Ci∩E|

|Ci |
|Ci ||V×V|

m/|V × V| (Plugging in definitions)

= |Ci ∩ E|
m

. (Simplifying)

Combining the last equation with Eq. (8) results directly in Eq. (6), and by substituting
into Eq. (9) we obtain:

Var(|Ci ∩ Enew|) = k|Ci ∩ E|
m

(1 − |Ci ∩ E|
m

) = k|Ci ∩ E||E \ Ci |
m2 ,

where we used the fact that |E\Ci | = |E| − |Ci ∩ E|. ��

3.4 Guarantees on error

There are three possible sources of error in the FLLM. First, the budget k could be set too
small to return all the missing links (Typ1- Err). Second, the budget could be distributed
inappropriately across the equivalence classes, which only happens if the future link distri-
bution differs from the observed link distribution (Typ2- Err). Finally, wrong pairs could be
returned from some equivalence classes (Typ3- Err); for instance, if one equivalence class
is assigned 10 pairs and there are in fact 10 unlinked pairs in it, some of the 10 returned may
be different from the 10 unlinked pairs, resulting in error.

Typ1- Err is not inherent to FLLM: it stems from resource constraints. Since the returned
pairs P are candidate pairs for a link predictor to make decisions about, the only limiting
factor on k is howmany decisions the link predictor can feasiblymake.We discuss this further
in a Connectomics application in Sect. 6. Furthermore, Typ3- Err arises from the method
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A hidden challenge of link prediction… 751

used to return pairs from equivalence classes, rather than from FLLM. We discuss means of
alleviating this error in method Sect. 4.

Only Typ2- Err is inherent to FLLM. However, we now show that this error is upper
bounded by a constant. While the derivation in the previous subsection assumed that the
future link distribution is the same as the observed link distribution, we show that for a fixed
k, the amount of error incurred when this assumption does not hold is entirely dependent on
the total variation distance and hence is upper bounded by 2k.
Total Variation Distance. The total variation distance [37] between pn and po, which is a
metric, is defined as

dTV (pn, po) � sup
A⊂�

|pn(A) − po(A)|. (10)

Total Error. The total error made in the approximation of E[|Ci ∩ Enew|] using Eq. (6) is
defined as

ξ �
∑

Ci∈�

|Ê[|Ci ∩ Enew|] − E[|Ci ∩ Enew|]|

=
∑

Ci∈�

|kpo(Ci ) − kpn(Ci )|, (11)

where Ê[|Ci ∩ Enew|] is the true expected value regardless of whether or not pn = po holds.

Theorem 2 The total error incurred over � in the computation of the expected number of
new edges that fall in each Ci ∈ � is an increasing function of the number of new pairs k
and the total variation distance between pn and po. Furthermore, it has the following upper
bound:

ξ = 2k dTV (pn, po) ≤ min(2k, 2k
√
1/2DKL(pn||po)). (12)

Proof

ξ �
∑

Ci∈�

|kpo(Ci ) − kpn(Ci )| See Eq. (11)

= 2kdTV (pn, po) See chapter 5 of [19]

≤ min(2k, 2k
√
1/2DKL(pn||po))

The inequality on the last line holds based on the fact that (1) dTV (·, ·) ranges in [0, 1]
and thus dTV (pn, po) ≤ 1, and (2) Pinsker’s inequality [37], which upper bounds dTV (·, ·)
via KL-divergence: dTV (pn, po) ≤ √

1/2DKL(pn||po). ��

3.5 Proximity model as a special case of FLLM

The PM, defined in Sect. 3.2, is a special case of FLLM, where FLLM’s grouping contains
just one group � = {V}. That is, if the nodes are not grouped, then the models give the same
result. Thus, FLLM’s improvement over LaPM is a result of using structurally meaningful
groupings over the graph. The following theorem states this result formally.

Theorem 3 For a single-node grouping � = {V}, both PM and FLLM give the same ranking
of pairs (u, v) ∈ V × V:

PrPM(auv = 1|sim(·, ·)) > PrPM(au′v′ = 1|sim(·, ·)) ⇐⇒
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PrFLLM(auv = 1|µu,µv, sim(·, ·)) > PrFLLM(au′v′ = 1|µu′ ,µv′ , sim(·, ·)).
Proof Since � = {V} the partition contains just one equivalence class � = {V × V}, and
since E ⊆ V × V , all observed edges fall in this lone equivalence class C = V × V . Thus
ρ(u, v) = 1 ∀(u, v) ∈ V × V .

Since there is only one equivalence class, the denominator in Definition 3 is equal to
a constant c �

∑
(u′,v′)∈[(u,v)]∼I

sim(u′, v′) = ∑
(u′,v′)∈V×V sim(u′, v′) ∀(u, v) ∈ V × V .

Therefore, PrFLLM(auv = 1|µu,µv, sim(·, ·)) = 1
c sim(u, v), andbothmodels are increasing

functions of sim(·, ·). ��

4 Method

We solve Problem 2 by using our FLLM model in a new method, LinkWaldo, shown in
Fig. 1, which has four steps:

– S1: Generate node groupings and equivalence classes.
– S2: Map the search space, deciding how many candidate pairs to return from each equiv-

alence class.
– S3: Search each equivalence class, returning directly the highest proximity pairs, and

stashing some slightly lower-proximity pairs in a global pool.
– S4: Choose the best pairs from the global pool to augment those returned from each

equivalence class.

We discuss these steps next, give pseudocode in Algorithm 1, and discuss time complexity
at the end of the section.

4.1 (S1) Generating node groupings

In theory, we would like to infer the groupings that directly maximize the likelihood of the
observed adjacency matrix. However, the techniques for inferring these groupings (and the
corresponding node membership vectors) are computationally intensive, relying on Markov
chain Monte Carlo (MCMC) methods [22]. Indeed, these methods are generally applied
in networks with only up to a few hundred nodes [23]. In cases where n is large enough
that considering all O(n2) node pairs would be computationally infeasible, so would be
MCMC. Instead LinkWaldo uses a fixed grouping, though it is agnostic to how the nodes
are grouped. We discuss a number of sensible groupings below, and discuss how to set the
number of groups in Sect. 5.3. Any other grouping can be readily used within our framework,
but should be carefully chosen to lead to strong results.

• Log-binned Node Degree (DG). This grouping captures degree assortativity [24]—the
extent to which low degree nodes link with other low degree nodes vs. high degree
nodes—by creating uniform bins in log-space (Fig. 1 gives an example with linear bins).

• Structural Embedding Clusters (SG).This grouping extends DG by clustering latent node
embeddings that capture structural roles of nodes [31].

• Communities (CG). This grouping captures community structure by clustering proximity
preserving latent embeddings or using community detection methods.

• Multiple Groupings (MG). Any subset of these groupings or any other groupings can be
combined into a new grouping, by setting µv element(s) to 1 for v’s membership in each
grouping, since nodes can have overlapping group memberships.
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Algorithm 1 LinkWaldo(G, sim(·, ·), k, τ )
1: /* S1: Generating Node Groupings */
2: Generate node grouping � inducing partition � � § 4.1
3: P, P̃G ← ∅, ∅ � Initialize pairs to return and global pool
4: for Ci ∈ � do � Search each equivalence class § 4.3
5: /* S2: Mapping the Search Space */
6: μ̄ ← E[|Ci ∩ Enew|] � Eq. (6)
7: σ ← √

Var(|Ci ∩ Enew|) � Eq. (7)
8: /* S3: Discovering Closest Pairs per Equivalence Class */
9: if |Ci | < τ then
10: SelectPairsExact(P, P̃G ,Ci , μ̄, σ )

11: else
12: SelectPairsApprox(P, P̃G ,Ci , μ̄, σ )

13: /* S4: Augmenting Pairs from Global Pool */
14: P ← P ∪ {top k − |P| pairs from P̃G }
15: return P
16: procedure SelectPairsExact(P , P̃G , Ci , μ̄, σ )
17: Sort pairs (u, v) ∈ Ci in descending order on sim(u, v)

18: P ← P∪ {top μ̄ − σ pairs}
19: P̃G ← P̃G∪ {next 2σ pairs}

20: procedure SelectPairsApprox(P , P̃G , Ci , μ̄, σ )
21: for i = 1, 2, . . . , r do � Create r trees
22: B ← {(Vu ,Vv)} � buckets start off as the root
23: while Vol(B) > κ do � cf. Prob. 3 for κ definition
24: Choose h(·) at random fromHrh
25: B′ ← ∅ � Create new buckets
26: for β ∈ B do � Branch each leaf (bucket)

27: β ′
left ← ({u ∈ V(β)

u : h(xu) < 0}, {v ∈ V(β)
v : h(xv) < 0})

28: β ′
right ← ({u ∈ V(β)

u : h(xu) ≥ 0}, {v ∈ V(β)
v : h(xv) ≥ 0})

29: B′ ← B′ ∪ {βleft, βright}
30: if Vol(B) ≤ κ then B ← B′
31: P ← P∪ {top μ̄ − σ pairs}
32: P̃G ← P̃G∪ {next 2σ pairs}

4.2 (S2) Mapping the search space

LinkWaldo’s approach to mapping the search space (i.e., identifying how many pairs to
return per equivalence class Ci ) follows directly from Theorem 1. LinkWaldo computes the
expected number of pairs in each equivalence class based on Eq. (6) and its variance based
on Eq. (7), as a measure of the uncertainty. When LinkWaldo searches each equivalence
class Ci , it returns the expected number of pairs minus a standard deviation directly and adds
more pairs, up to a standard deviation past the mean, to a global pool P̃G , for use in S4. Thus,
LinkWaldo adds into P the E[|Ci ∩ Enew|] − √

Var(|Ci ∩ Enew|) pairs in closest proximity
in equivalence class Ci , and the next 2

√
Var(|Ci ∩ Enew|) closest pairs into the global pool

P̃G (both expressions are rounded to the nearest integer). Node pairs that are already linked
are skipped.
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4.3 (S3) discovering closest pairs per equivalence class

We now discuss how LinkWaldo discovers the κ closest unlinked pairs within each equiva-
lence class (Fig. 1), where κ is determined in step S2 based on the expected number of pairs
in the equivalence class, and variance (uncertainty).

Problem 3 Given an equivalence class Ci , return the top-κ unlinked pairs in Ci in closest
proximity sim(·, ·), where κ = E[|Ci ∩ Enew|] + √

Var(|Ci ∩ Enew|) (based on S2).

For equivalence classes smaller than some tolerance τ , it is feasible to search all pairs
of nodes exhaustively. However, for |Ci | > τ , this should be avoided, to make the search
practical. We first discuss this case when using the dot product similarity simLaPM(·, ·) in
Eq. (2) and then discuss it for other similarity models (CN, JS, and AA) given by Eqs. (3)–
(5). Finally, we introduce a refinement that improves the robustness of LinkWaldo against
errors in proximity.

4.3.1 Avoiding exhaustive search for dot product

In the case of dot product, we use Locality Sensitive Hashing (LSH) [39] to avoid searching
all |Ci | pairs. LSH functions have the property that the probability of two items colliding is a
function of their similarity. We use the following fact, which is a direct consequence of the
definition of the membership equivalence relation given in Sect. 3:

Fact 1 The equivalence class Ci can be decomposed into the Cartesian product of two sets
Ci = Vu × Vv , where Vu � {u : µu = µ} and Vv = {v : µv = µ′}.
At a high level, to solve Problem 3, we hash each node embedding of the nodes in Vu and Vv

using a locality sensitive hash function. We design the hash function, described next, such
that the number of pairs that map to the same bucket is greater than κ , but as small as possible,
to maximally prune pairs. Once the embeddings are hashed, we search the pairs in each hash
bucket for the κ closest. We normalize the embeddings so that dot product is equivalent to
cosine similarity, and use the Random Hyperplane LSH family [6].

Definition 4 (Random hyperplane hash family) The random hyperplane hash family Hrh is
the set of hash functions Hrh � {h : Rd → {0, 1}}, where rh is a random d-dimensional

Gaussian unit vector and h(x) �
{
1 if rTh x ≥ 0

0 if rTh x < 0
.

This hash family is well-known to provide the property that the probability of two vectors
colliding is a function of the degree of the angle between them [3]:

Pr(h(xu) = h(xv)) = 1 − θ(xu, xv)

π
= 1 − arccos(xTu xv)

π
,

where the last equality holds due to normalized embeddings.
To lower the false-positive rate, it is conventional to form a new hash function by sampling

b hash functions fromHrh and concatenating the hash codes: g(·) = (h1(·), h2(·), . . . , hb(·)).
The new hash function is from another LSH family:

Definition 5 (b-AND-random hyperplane hash family) The b-AND-Random hyperplane
hash family is the set of hash functions Hb

and � {g : R
d → {0, 1}b}, where g(x) =

(h1(x), h2(x), . . . , hb(x)) is formed by concatenating b randomly sampled hash functions
h(·) ∈ Hrh for some b ∈ N.
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Fig. 2 LSH Tree. Each level of the tree corresponds to a random hash function, and the leaves correspond to
buckets

Since the hash functions are sampled randomly from Hrh,

Pr(g(xu) = g(xv)) =
(

1 − arccos(xTu xv)

π

)b

. (13)

Only vectors that are not split by all b random hyperplanes end up with the same hash
codes, so this process lowers the false-positive rate. However, it also increases the false-
negative rate for the same reason. The conventional LSH scheme then repeats the process r
times, computing the dot product exactly over all pairs that match in at least one b-dim hash
code, in order to lower the false-negative rate. The challenge of this approach is determining
how to set b. To do so, we first define the hash buckets of a hash function and their volume.

Definition 6 (Hash buckets and volume) Given an equivalence class Ci = Vu ×Vv and a hash
function g(·) : Rd → {0, 1}b, after applying g(·) to all v ∈ Vu ∪ Vv , a hash bucket

β = {u ∈ Vu, v ∈ Vv : g(u) = g(v) = βhashcode}
consists of subsets V(β)

u ⊆ Vu,V(β)
v ⊆ Vv of nodes that mapped to hashcode βhashcode ∈

{0, 1}b. The set of hash buckets Bg = {β : |β| > 0} consists of all nonempty buckets. We
define the volume of the buckets as the number of pairs (u, v) where u and v landed in the
same bucket:

Vol(Bg) � |{(u, v) : g(xu) = g(xv)}| = ∑
β∈Bg

|V(β)
u × V(β)

v |.
Since we are after the κ closest pairs, we want to find a hash function g(·) such that

Vol(Bg) ≥ κ . But since we want to search as few pairs as possible, we seek the value of b
that minimizes Vol(Bg) for some g(·) ∈ Hb

and subject to the constraint that Vol(Bg) ≥ κ .
Any hash function g ∈ Hb

and corresponds to a binary prefix tree, like Fig. 2. Each level of
the tree corresponds to one h ∈ Hrh, and the leaves correspond to the buckets Bg . Thus, to
automatically identify the best value of b, we can recursively grow the tree, branching each
leaf with a new random hyperplane hash function h ∈ Hrh, until Vol(Bg) < κ , then undo
the last branch. At that point, the depth of the tree equals b, and is the largest value such that
Vol(Bg) ≥ κ . To prevent this process from repeating indefinitely in edge cases, we halt the
branching at a maximum depth bmax. This approach is closely related to LSH Forests [3], but
with some key differences, which we discuss shortly.

Theorem 4 Given a hash function g ∈ Hb
and, the κ closest pairs in Ci are the κ most likely

pairs to be in the same bucket:

Pr(g(xu) = g(xv)) > Pr(g(xu′) = g(xv′)) ⇐⇒ xTu xv > xTu′xv′ .
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Proof Since arccos(x) is a decreasing function of x , Eq. (13) shows that Pr(g(xu) = g(xv))

is an increasing function of xTu xv . The result follows from this. ��
While xTu xv > xTu′xv′ implies that (u, v) aremore likely than (u′, v′) to be in the same bucket,
it does not guarantee that this outcome will always happen. Thus, we repeat the process r
times, creating r binary prefix trees and, searching the pairs that fall in the same bucket in
any tree for the top κ . Setting the r parameter is considered of minor importance, as long as
it is sufficiently large (e.g., 10) [3].

Each hash bucket (tree leaf) contains a sets of node pairs. Critically, each bucket contains
this information only tacitly because it consists of two sets V(β)

u and V(β)
v of nodes, and the

node pairs are only realized by taking the Cartesian product of these two sets. Moreover, the
volume can be computed by multiplying the size of the respective sets (i.e., |V(β)

u × V(β)
v | =

|V(β)
u | ∗ |V(β)

v |). This property is what allows the search to implicitly avoid distant pairs: each
time a new branch is formed, the nodes that go left will no longer pair with those that go
right, and only when the tree is fully grown are the pairs in the buckets (leaves) actually
instantiated by computing the Cartesian products.
Differences from LSH Forests [3]. LSH Forests are designed for K NN -search, which seeks
to return the nearest neighbors to a query vector. In contrast, our approach is designed for
κ-closest pairs search, which seeks to return the κ closest pairs in a set Ci . LSH Forests grow
each tree until each vector is in its own leaf. We grow each tree until we reach the target
bucket volume κ . LSH Forests allow variable length hash codes, since the nearest neighbors
of different query vectors may be at different relative distances. All our leaves are at the same
depth so that the probability of (u, v) surviving together to the leaf is an increasing function
of their dot product.

4.3.2 Avoiding exhaustive search for heuristics

For the heuristic definitions of proximity in Eqs. (3)–(5), there are two approaches to solving
Problem 3. The first is to construct embeddings from the CN and AA scores (this does
not apply to JS). For CN, if we let the node embeddings be their corresponding rows in
the adjacency matrix, i.e., XCN = A, then simCN(u, v) = xTu xv . Similarly, XAA = A ·
1/

√
log(D), yields simAA(u, v) = xTu xv , where D is a diagonal matrix recording the degree

of each node. Thus, the LSH solution just described can be applied. The second approach
uses the fact that all three heuristics are defined over the 1-hop neighborhoods of nodes (u, v).
Thus, to have nonzero proximity, (u, v) must be within 2-hops of each other, and any pairs
not within 2-hops can implicitly be ignored.

4.3.3 Bail out refinement

To this point we have assumed that the proximity model used in LinkWaldo is highly infor-
mative and accurate. However, in reality, heuristicsmay not be informative for all equivalence
classes, and even learned, latent proximity models, can fail to encode adequate information.
For instance, it is challenging to learn high-quality representations for low-degree nodes.
Thus, we introduce a refinement to LinkWaldo that automatically identifies when a prox-
imity model is uninformative in an equivalence class, and allows it to bail out of searching
that equivalence class.
Proximity Model Error. The error that a proximity model makes is the probability
Pr(sim(u, v) < sim(u′, v′)) that it gives a higher proximity for some unlinked pair (u′, v′) /∈
E than for some linked pair (u, v) ∈ E . This is what referred to as Typ3- Err in Sect. 3.4.
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By this definition of error,we expect strong proximitymodels tomostly assign higher prox-
imity between observed edges than future ormissing edges: Pr(sim(u, v) > sim(u′, v′)) ≈ 1
for some (u, v) ∈ E and (u′, v′) ∈ Enew. Thus, on our way to finding the top-κ most similar
(unlinked) pairs in an equivalence class (Problem 3), we expect to encounter a majority of the
observed edges (linked pairs) |E∩Ci | that fall in that class. For a user-specified error tolerance
ζ , LinkWaldo will bail out and return no pairs from any equivalence class where less than
ζ fraction of its observed edges are encountered on the way to finding the κ most similar
unlinked pairs. LinkWaldo keeps track of how many pairs were skipped by bailing out, and
replaces them (after step S4) by adding to P the top-ranked pairs of a heuristic (e.g., AA).

4.4 (S4) Augmenting pairs from global pool

Since LinkWaldo returns a standard deviation below the expected number of new pairs in
each equivalence class, it chooses the remaining pairs up to k from P̃G . To do so, it considers
pairs in descending order on the input similarity function sim(·, ·) and greedily adds to P
until |P| = k.

4.5 Complexity analysis

Let γ be the time complexity of the node grouping (S1). Computing the expected number
of new edges in each cell and the variances directly from the observed links, (S2), is O(m).
The complexity of searching equivalence classes (S3) comes from hashing each node in
the decomposition O(bmax) times and finding the κi closest pairs in the O(κi ) pairs that
land in the same bucket:

∑
Ci∈� O(|Vu ∪ Vv|bmax + κi ) = O(nbmax + k). This assumes

that we do not encounter unrealistic scenarios, such as the embeddings being equivalent and
hence inseparable, and that bmax is set large enough that the volume of tree leaves is not
asymptotically larger than O(κi ). Adding from the global pool (S4) takes O(k) time, since
|P̃G | = O(k) and can be maintained in sorted order in similar fashion to the merge in merge
sort. Thus, the total time complexity is O(γ + m + nbmax + k).

5 Evaluation

We evaluate LinkWaldo on four research questions:

– (RQ1) Does the set P returned by LinkWaldo have high recall and precision?
– (RQ2) Is LinkWaldo scalable?
– (RQ3) How do parameters affect performance?
– (RQ4) What are the main sources of error?

Before we answer these questions, we describe the data and empirical setup.
Data We evaluate LinkWaldo on a large, diverse set of networks: metabolic, social, com-
munication, and information networks (Table 2). Moreover, we include datasets to evaluate
in both LP scenarios: (1) returning possible missing links in static graphs and (2) returning
possible future links in temporal graphs. We treat all graphs as undirected.

• Metabolic networks. Yeast [40], HS-Protein [16], and Protein-Soy [18] are metabolic
protein networks, where edges denote known associations between proteins in different
species. Yeast contains proteins in a species of yeast, HS-Protein in human beings, and
Protein-Soy in Glycine max (soybeans).
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Table 2 Dataset properties and statistics: if the graph is temporal or static, density, degree assortativity [24],
and number of nodes and edges

Graph Temporal Density (%) Assortativity Nodes n Edges m

Yeast – 0.41% 0.4539 2375 11, 693

DBLP – 0.06 −0.0458 12, 595 49, 638

Facebook1 – 1.08 0.0636 4041 88, 235

MovieLens � 2.90 −0.2268 2627 100, 000

HS-Protein – 0.74 0.2483 6329 147, 548

arXiv – 0.11 0.2051 18, 772 198, 110

MathOverflow � 0.06 −0.1979 24, 820 199, 974

Enron � 0.01 −0.1667 87, 275 299, 221

Reddit � 0.01 −0.1278 67, 180 309, 667

Epinions – 0.01 −0.0406 75, 881 405, 741

Facebook2 � 0.04 0.1770 63, 733 817, 063

Digg � < 0.01 −0.0557 279, 376 1, 546, 541

Protein-Soy – 1.64 −0.0192 45, 116 16, 691, 679

• Social networks. Facebook1 [18] and Facebook2 [16] capture friendships on Facebook,
Reddit [18] encodes links between subreddits (topical discussion boards), edges in Epin-
ions [16] connect users who trust each other’s opinions, MathOverflow [18] captures
comments and answers on math-related questions and comments (e.g., user u answered
user v’s question), Digg [30] captures friendships among users.

• Communication networks. Enron [16] is an email network, capturing emails sent during
the collapse of the Enron energy company.

• Information networks.DBLP [16] is a citation network, and arXiv [18] is a co-authorship
network of Astrophysicists. MovieLens [16] is bipartite graph of users rating movies for
the research project MovieLens. Edges encode users and the movies that they rated.

Setup Training Graph and Ground Truth. While using LinkWaldo in practice does not
require a test set, in order to know how effective it is, we must evaluate it on ground truth
missing links. As ground truth, we remove 20% of the edges. In the static graphs, we remove
20% at random. In the temporal graphs, we remove the 20% of edges with the most recent
timestamps. If either of the nodes in the removed edge is not present in the training graph, we
discard the edge from the ground truth. The graph with these edges removed is the training
graph, which LinkWaldo and the baselines observe when choosing the set of unlinked pairs
to return.
Method Configuration. We discuss in Sect. 5.3 how we choose which groupings to use
and how many groups in each. Whenever used, we implement SG and CG by clustering
embeddings with KMeans: xNetMF [12] and NetMF [28] (window size 1), respectively. In
LSH, we set the maximum tree depth dynamically based on the size of an equivalence class:
bmax = 12 if |Ci | < 1B, bmax = 15 if |Ci | < 10B, bmax = 20 |Ci | < 25B, bmax = 30
otherwise. We set the number of trees r based on the fraction of |Ci | that we seek to return:
r = 5 if κ/|Ci | < 0.0001, r = 10 if κ/|Ci | < 0.001 and r = 25 otherwise.
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5.1 (RQ1) Recall and precision

Task setup We evaluate how effectively LinkWaldo returns in P the ground truth missing
links, at values of k much smaller than n2. We report k, chosen based on dataset size, in
Table 3, and discuss effects of the choice in Sect. 5.3.1. We compare the set LinkWaldo

returns to those of five baselines and evaluate both LinkWaldo-D, which uses grouping DG,
and LinkWaldo-M, which uses DG, SG, and CG together. In both LinkWaldo variants,
we consider the following proximities (Sect. 3.2) as input and report the results that are best:
LaPM using NetMF [28] embeddings (window sizes 1 and 2), and AA, the best heuristic
proximity. For the bipartite MovieLens, we use BiNE [9], an embedding method designed
for bipartite graphs. We report the input proximity model for each dataset in Table 6 in
appendix. We set the exact-search and bailout tolerances to τ = 25M and ζ = 0.5, which
we determined via a parameter study in Sect. 5.3. Results are averages over five random
seeds (Sect. 5): for static graphs, the randomly removed edges are different for each seed;
for temporal graphs, the latest edges are always removed, so the LSH hash functions are the
main source of randomness.
Metrics We use Recall (R@k), the fraction of known missing/future links that are in the
size-k set returned by the method, and Precision (P@k), the fraction of the k pairs that are
known to be missing/future links. Recall is a more important metric, since (1) the returned
set of pairs P does not contain final predictions, but rather pairs for a LP method to make
final decisions about, and (2) our real-world graphs are inherently incomplete, and thus pairs
returned that are not known to be missing links, could nonetheless be missing in the original
dataset prior to ground truth removal (i.e., the open-world assumption [32]). We report both
in Table 3.
Baselines We use five baselines. NMF+BAG [8] uses nonnegative matrix factorization
(NMF) and a bagging ensemble to return k pairs while pruning the search space. We use
their reported strongest version: the Biased Edge Bagging version with Node Uptake and
Edge Filter optimizations (Biased(NMF+)). We use the authors’ recommended parameters
when possible: ε = 1, μ = 0.1, f = 0.1, ρ = 0.75, number of latent factors d = 50, and
ensemble size μ/ f 2. In some cases, these suggested parameters led to fewer than k pairs
being returned, in which case we tweaked the values of ε, μ, and f until k were returned.
We report these deviations in Table 6 in appendix. We use our own implementation.

We also use four proximity models, which we showed to be special cases of FLLM in
Sect. 3.5:LaPM ranks pairs globally based on the dot product of their embeddings and returns
the top k. To avoid searching all-pairs, we use the same LSH scheme that we introduce in
Sect. 4.3 for LinkWaldo. We set r = 25, and like LinkWaldo, use NetMFwith a window
size of 1 or 2, except for MovieLens, where we use BiNE.
JS, CN, and AA are defined in 3.2.We exploit the property described in 4.3.2—i.e., all these
scores are zero for nodes beyond two hops. We compute the scores for all nodes within two
hops and return the top k unlinked pairs.
Results Across the 13 datasets, LinkWaldo is the best performing method on 10, in both
recall and precision. The LinkWaldo-M variant is slightly stronger than LinkWaldo-D,
but the small gap between the two demonstrates that even simple node groupings can lead to
strong improvements over baselines. LinkWaldo generalizes well across the diverse types
of networks. In contrast, the heuristics perform well on social networks, but not as well on,
e.g., metabolic networks (Yeast, HS-Protein, and Protein-Soy). Furthermore, the heuristic
baselines cannot extend to bipartite graphs like MovieLens, because fundamentally, all links
form between nodes more than one hop away. These observations demonstrate the value of
learning from the observed links, which LinkWaldo does via resemblance. We also observe
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Fig. 3 LinkWaldo is sub-quadratic on the number of nodes (a) and linear on the number of edges (b)

that heuristic definitions of similarity, such as AA, outperform latent embeddings (LaPM)
that capture proximity. We conjecture that the embedding methods are more sensitive to the
massive skew of the data, because even random vectors in high-dimensional space can end
up with some level of proximity, due to the curse of dimensionality. This suggests that the
standard approach of evaluating on a balanced test set may artificially inflate results.

In the three datasets where LinkWaldo does not outperform AA, it is only outperformed
by a small margin. Furthermore, the four datasets with the largest total Variation distances
between pn and po are MovieLens, MathOverflow, Enron, and Digg. Theorem 2 suggests
that LinkWaldomay incur the most error in these datasets. Indeed, these are the only three
datasets where LinkWaldo fails to outperform all other methods (with MovieLens being
bipartite, as discussed above). While the performance on temporal networks is strong, the
higher total Variation distance suggests that the assumption that po = pn may sometimes
be violated due to concept drift [5]. Thus, a promising future research direction is to use the
timestamps of observed edges to predict roadmap drift over time, in order to more accurately
estimate the future roadmap.

5.2 (RQ2) Scalability

Task setup We evaluate how LinkWaldo scales with the number of edges, and the number
of nodes in a graph by running LinkWaldo with fixed parameters on all datasets. We set
k = 1M , use NetMF (window-size of 1) as sim(·, ·), and do not perform bailout (ζ = 0).
All other parameters are identical toRQ1. We use our Python implementation on an Intel(R)
Xeon(R) CPU E5–2697 v3, 2.60GHz with 1TB RAM.
Results The results in Fig. 3 demonstrate that in practice, LinkWaldo scales linearly on the
number of edges, and sub-quadratically on the number of nodes.

5.3 (RQ3) Parameter analysis

Setup We evaluate the quality of different groupings (Sect. 4.1), and how the number of
groups in each affects performance. On four graphs, Yeast, arXiv, Reddit, and Epinions, we
run LinkWaldo with groupings DG, SG, and CG, varying the number of groups |�| ∈
{5, 10, 25, 50, 75, 100}. We also investigate pairs of groupings, and the combination of all
three groupings, via grid search of the number of groupings in each. We also evaluated
τ ∈ {1M, 10M, 25M, 50M}, the tolerance for searching equivalence classes exactly vs.
approximately with LSH, and ζ ∈ {0, 0.1, 0.25, 1/3, 0.5, 2/3}, the fraction of training pairs
we allow the proximity function to miss before we bailout of an equivalence class.
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Fig. 4 Number of groups for groupings DG (a), SG (b), and CG (c)

Fig. 5 Parameter analysis: recall for different combinations of number of log-bins for DG (10 or 25, shown
on the x-axis), and number of groups for SG and CG (the same number is used for both; each line corresponds
to a different number). Using 5 groups for SG and CG (black line) is best and slightly better when 25 groups
are used for DG

Results Varying the groupings. The results for the individual groupings are shown in Fig. 4.
Grouping by log-binning nodes based on their degree, (i.e., DG) is in general the strongest
grouping. Across all three groupings, we find that |�| = 25 is a good number of groups. We
found that using all three groupings was the best combination, with 25 log-bins, 5 structural
clusters, and 5 communities. This is shown in Fig. 5, which varies the number of DG groups
on the x-axis and each line represents different choices for the number of SG and CG groups.
Five groups for SG and CG (black line) had slightly higher recall with 25 DG groups. For
individual groupings, we observe diminishing returns, and in multiple groupings, slightly
diminished performance when the number of groups in each grows large.We omit the figures
for τ and ζ , but found that τ = 25M and ζ = 0.5 were the best parameters.
Varying τ . When we vary τ ∈ {1M, 10M, 25M, 50M}, we expect LinkWaldo’s time to
follow a U-shaped curve and its recall to show diminishing returns. The smaller τ , the fewer
equivalence classes we will search exactly. LSH has overhead due to needing to repeatedly
hash the node pairs in an equivalence class, and due to redundancy across trees. This overhead
is best avoided by not setting τ too small. On the other hand, if τ is too large, the quadratic
complexity of searching large equivalence classes could dwarf the LSH overhead. This is
whywe expect to see a U-shaped curve with respect to runtime. Because LSH is approximate,
it could introduce a small amount of error, in which case we expect recall to slowly increase
as τ gets larger (i.e., as more equivalence classes are searched exactly). Thus, our goal is
to find the largest value of τ that is safely in the bottom of the U-shaped time curve. In
Fig. 6b, the recall is stable across all values of τ , indicating that our locality-sensitive hashing
approach does not degrade macro-level performance. The U-shaped curve in Fig. 6a becomes
apparent only for large graphs (Digg in this case), because the cost of exhaustively searching
an equivalence class only becomes problematic for large graphs. The curve starts to increase
rapidly at τ = 50M , so τ = 25M is the largest value in the bottom of the U-shaped curve.
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Fig. 6 Runtime and recall for varying values of tolerance τ . a The U-shaped curve, which is apparent for the
large graph Digg, starts to increase rapidly at τ = 50M , so τ = 25M is the largest value in the bottom of the
curve. b The recall is stable across all values of τ , indicating that our locality-sensitive hashing approach does
not degrade macro-level performance

Fig. 7 Recall for varying bailout tolerance ζ for small (a) and large (b) graphs. The recall improves with larger
ζ up to a point (diminishing returns), so we chose ζ = 0.5 for our experiments

We choose this value for the rest of our experiments, but τ = 10M would also be a sensible
choice.
Varying ζ . In our parameter analysis, we vary ζ ∈ {0, 0.1, 0.25, 1/3, 0.5, 2/3}. In Fig. 7, we
plot the results for four smaller graphs on the left (a) and four larger graphs on the right (b)
in order to visualize the trends more clearly. The figure shows that the recall improves with
larger ζ up to a point, but in some cases begins to degrade for ζ > 0.5. Thus, we choose
ζ = 0.5 in our experiments.

5.3.1 Effect of k

Setup We now evaluate the effects of budget k on recall. We ran LinkWaldo-M with the
same parameters as in the main performance experiment in Sect. 5.1, but over multiple values
of k. We compared the performance to AA and NMF+Bag, the best performing baselines in
Sect. 5.1. For this experiment, we used HS-Protein and Facebook2. The values of k that we
chose were roughly up to an order of magnitude greater than m.
Results Table 4 gives results (averages over 3 seeds) for multiple values of k. For reasonable
values of k results are mostly stable. The main exception is for small k, where NMF+Bag

performs well in some cases. This is consistent with its design: to return a small, accurate set
of top-k predictions, rather than a candidate set.
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Table 4 We report “< k” if fewer than k pairs are returned

Metric HS-Protein Facebook2

NMF+Bag AA LinkWaldo-M NMF+Bag AA LinkWaldo-M

R@10K 0.2629 0.1909 0.2251 0.0093 0.0103 0.0172

R@100K < k 0.8443 0.9035 0.0422 0.0672 0.1106

R@1M < k 0.9747 0.9847 0.0970 0.2832 0.3781

R@5M N/A N/A N/A < k 0.5561 0.5762

Bold denotes the best-performing model
N/A indicate values of k outside the scale of the dataset

Table 5 Average Pearson correlation (over three runs) between Typ2- Err and recall (R), and Typ3- Err and
recall for different datasets

Graph Pearson r Typ2- Err with R Pearson r Typ3- Err with R

Yeast r = −0.6378 (p = 0.36) r = −0.9945 (p = 0.01)

DBLP r = 0.0665 (p = 0.93) r = −0.9998 (p < 0.01)

Facebook1 r = −0.4284 (p = 0.57) r = −0.9774 (p = 0.02)

HS-Protein r = −0.8493 (p = 0.15) r = −0.9997 (p < 0.01)

arXiv r = −0.3586 (p = 0.64) r = −0.9991 (p < 0.01)

MathOverflow r = 0.2478 (p = 0.75) r = −0.9997 (p < 0.01)

Enron r = 0.1763 (p = 0.82) r = −0.9992 (p < 0.01)

Reddit r = 0.1050 (p = 0.9) r = −0.9997 (p < 0.01)

Epinions r = 0.1763 (p = 0.82) r = −0.9994 (p < 0.01)

Bold denotes the best predictor of recall
Typ3- Err is a significantly better predictor of recall than Typ2- Err

5.4 (RQ4) Sources of error

In Sect. 3.4, we discussed three types of error. We now analyze how much these contribute
to reduced recall in practice. As discussed before, Typ1- Err can be avoided by setting k
higher, so we focus only on Typ2- Err and Typ3- Err.
Setup We ran LinkWaldo for each of the four groupings (DG, SG, CG, and MG) and
compute: (1) the Typ2- Err and Typ3- Err error, and (2) the resulting recall. We then
computed the Pearson correlation between the Typ2- Err error and Recall, and the Typ3-
Err error and Recall. Negative correlation is expected, since it means that increased error
corresponds to decreased recall. We ran this experiment with bailout turned off, since this
would interfere with our interpretation of Typ3- Err. We set k high enough to ensure no
Typ1- Err.
Results We show results from nine datasets in Table 5, which are each averages over three
runs. Typ3- Err is strongly negatively correlated with recall, while Typ2- Err is not. The
Typ3- Err correlations are all statistically significant at a 0.05 significance level, and 7/9
are at 0.01. On the other hand Typ2- Err is never significantly correlated. Thus, Typ3- Err
is a better predictor of recall than Typ2- Err error. Results were very similar when using
Spearman’s ρ correlation, which does not assume a linear relationship.

As discussed in Sect. 3.4, Typ2- Err occurs when FLLM’s assumption that future links
follow the same distribution as observed links are violated. Typ3- Err error occurs when the
proximity model used within equivalence classes returns the wrong pairs. Taken together,
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this suggests that FLLM is quite robust, and it may be fruitful to investigate improvements
to proximity models.

While investigating the errors that LinkWaldo makes, we found one pervasive source
of Typ3- Err error: equivalence classes with many low-degree nodes. In these equivalence
classes, the proximity models struggled to return the correct pairs (i.e., those that were
actually missing). This was exacerbated when the equivalence class was assigned a large
fraction of the budget. This is straightforward to interpret in the context of the DG grouping:
when many observed links are between a low degree node and a high degree node, high
Typ3- Err error will ensue. Critically, the error is not occurring because of poor assignment
of the budget—FLLM was correct to assign these equivalence classes large fractions of the
budget because there were in fact many missing links in these equivalence classes. Rather,
the error occurred because the proximity model failed to return many of those missing links,
and instead returned others. This scenario is pervasive because of two facts. First, graphs tend
to exhibit skewed degree distributions, which means that most links must involve low-degree
nodes. Second, low-degree nodes are themost challenging for heuristic and embedding-based
models to handle because their contexts are so sparse.

6 Discussion: real-world applications & future research

We foresee our work providing new opportunities for research in biology, particularly in
mapping metabolic networks and connectomes. We focus here on connectomes, but most of
what we say generalizes to metabolic networks.
Background. Connectomics [34] is the construction and study of complete mappings of
organisms’ nervous systems (connectomes). The only organism whose connectome has been
completely mapped is the C. elegans nematode [38]. Despite the C. elegans nervous system
containing only 302 neurons, it took decades for scientists to map the roughly 7,000 synaptic
connections. The number of neurons grows rapidly with organism complexity: the fruit fly
Drosophila contains 135,000 neurons, a mouse’s hippocampus alone contains roughly a
million neurons [2], and the human connectome is estimated to contain a hundred billion
(1011) neurons [34]. Due to its massive size, completing the human connectome at the level
of individual neurons is generally considered implausible. Research instead considers the
macroscale of brain regions and pathways, and the mesoscale, often consisting of groups of
roughly a hundred neurons [34]. Either of these more granular levels of description lowers
the number of nodes in the connectome by orders of magnitude, which makes the problem
at least plausible.

However, as scientists seek to map a connectome, they face enormous numbers of possi-
ble synaptic connections. Each possible connection involves experimentation to determine
whether or not the connection really exists. For instance, the nematode C. elegans would
require

(302
2

) = 45, 451 experiments to map the connectome by brute force; the fruit fly

Drosophila would require
(135,000

2

) ≈ 9 billion experiments.
Ashortcomingof standard link prediction. Alinkpredictor could be used to prioritize themost
plausible connections.While a link predictor might make quick work of 9 billion predictions,
scientists would still need to confirm the predictions via experimentation. Suppose that an
underlying graph has—quite realistically—density δ = 0.001, meaning that only 0.1% of
neuron pairs form a synaptic connection, while 99.9% of the pairs will in fact not link.
Even a highly accurate link predictor, for instance one with an AUC of 0.95, will return
an enormous number of false-positive experiments to the scientist. To see this, observe that
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AUC can be interpreted as the probability that a random synaptic connection is ranked higher
than a random nonconnected pair of neurons by the link predictor. Thus, for an arbitrary
link (positive), the expected number of nonlinks (negatives) ranked higher than it will be
(0.999 ∗ 9, 000, 000, 000) ∗ 0.05 ≈ 450M for a 0.95 AUC link predictor. Even though the
fraction of negatives ranked above the positive is small (5%), the absolute number is enormous
due to the sparsity of the graph. This reality is not captured in the standard link prediction
setup with a balanced test set. Moreover, this problem arises not just in the evaluation of a
link predictor but also in its use: even if evaluation takes sparsity into account, a scientist will
still have an infeasible 450M experiments to carry out.
The solution of candidate node-pair selection. We thus believe our problem formulation
(Problem 3, reworded below) is more suited for network completion tasks faced in practice.

Problem 4 Given a graph G = (V, E) and a budget k << n2, return a set of plausible
candidate node pairs P ⊂ V × V of size |P| = k for further experimentation.

The budget k can be set by the scientist, based on what is a feasible number of experiments
to carry out.

LinkWaldo takes steps toward alleviating the challenges discussed above to solve Prob-
lem 4. Specifically, it combines the notion of structural resemblance and the common notion
of node proximity. As a result, the node pairs deemed plausible will be those that are in
close proximity and structurally resemble observed links—a subset of those that are just in
close proximity. The benefits of this insight are demonstrated empirically in LinkWaldo’s
improved recall over baselines (Table 3).
Future Directions. Our proposed approach provides a way to tackle some of the challenges
that come up in real scenarios, and also opens up several future directions.

First of all, on many datasets LinkWaldo’s recall, despite significant improvement over
baselines, is still low in absolute terms. This raises the question, are there properties beyond
structural resemblance and node proximity that can further handle the skew of the search
space?

Second, future research could probe the theoretical limits of our problem formulation:
given a target recall R and probability p, for what budgets k is it possible to return a
size-k set of pairs that achieves recall R with probability at least p? An answer to this
questionwould allow, for instance,Connectomics researchers to knowhowmany experiments
they need to carry out (k) to complete the connectome (R = 1) and be confident (with
probability p) that the graph is indeed complete. Moreover, the scientists could use this
knowledge to determine a feasible scale for a particular connectome (neuron level,mesoscale,
or macroscale). This can be further generalized to other scientific problems (e.g., metabolic
network inference/completion).

7 Conclusion

In this paper, we focus on the under-studied and challenging problem of identifying a mod-
erately sized set of node pairs for a link prediction method to make decisions about. We
mitigate the vastness of the search space, filled with mostly nonlinks, by considering not just
proximity, but also how much a pair of nodes resembles observed links. We formalize this
idea in the Future Link Location Model, show its theoretical connections to stochastic block
models and proximity models, and introduce an algorithm, LinkWaldo, that leverages it to
return high-recall candidate sets, with only a tiny fraction of all pairs. Via our resemblance
insight, LinkWaldo’s strong performance generalizes from social networks to protein net-
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works. Future directions include investigating the directionality of links, since the roadmap
can incorporate this information, and extending to heterogeneous graphs with many edge
and node types, like knowledge graphs.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10115-021-01632-x.
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A Proximity models

Herewe discuss the proximitymodels used in Sect. 5.1. The proximitymodel for eachmethod
(along with parameters for the NMF+Bag baseline) is given in Table 6. We observe that the
AA heuristic performed well on several datasets. During development, we tried over two
dozen embedding methods (including GNNs) and found NetMF to be the most consistently
strong for both LaPM and LinkWaldo. This, combined with the strong performance of AA,
suggests that there is much room for improving proximity-preserving embedding methods.
Improving their performance for low-degree nodes is of particular importance, as discussed
in Sect. 5.4.

Table 6 The best input proximity model for LaPM and LinkWaldo (used in Sect. 5.1) and parameter
deviations from default for NMF+Bag

Graph LaPM LinkWaldo-D LinkWaldo-M NMF+Bag

Yeast NetMF- 2 NetMF- 2 NetMF- 2 ε = 0.5

DBLP NetMF- 2 NetMF- 2 NetMF- 2 Default

Facebook1 NetMF- 1 AA AA ε = 0.1

MovieLens BiNE BiNE BiNE ε = 0.05

HS-Protein NetMF- 2 NetMF- 2 NetMF- 2 ε = 0.75

arXiv NetMF- 2 AA AA Default

MathOverflow NetMF- 2 NetMF- 1 NetMF- 1 ε, μ, f = 0.5, 0.3, 0.3

Enron NetMF- 2 NetMF- 1 AA Default

Reddit NetMF- 2 AA AA Default

Epinions NetMF- 1 AA AA Default

Facebook2 NetMF- 2 AA AA Default

Digg NetMF- 2 NetMF- 1 NetMF- 1 Default

Protein-Soy NetMF- 1 NetMF- 2 NetMF- 2 Default
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